node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
CN09_03380 | CN09_03985 | CN09_03380 | CN09_03985 | 2-oxoisovalerate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology | Anthranilate synthase; trpE(G); catalyzes the formation of anthranilate from chorismate and glutamine; contains both component I and II; Derived by automated computational analysis using gene prediction method: Protein Homology | 0.999 |
CN09_03380 | gcvP | CN09_03380 | CN09_06885 | 2-oxoisovalerate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology | Glycine dehydrogenase; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein | 0.890 |
CN09_03380 | glyA | CN09_03380 | CN09_10385 | 2-oxoisovalerate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism | 0.999 |
CN09_03380 | guaA | CN09_03380 | CN09_14055 | 2-oxoisovalerate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology | Gmp synthase; Catalyzes the synthesis of GMP from XMP | 0.999 |
CN09_03380 | guaB | CN09_03380 | CN09_16005 | 2-oxoisovalerate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology | inosine-5-monophosphate dehydrogenase; Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth | 0.999 |
CN09_03380 | nnrD | CN09_03380 | CN09_07485 | 2-oxoisovalerate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology | Hypothetical protein; Bifunctional enzyme that catalyzes the epimerization of the S- and R-forms of NAD(P)HX and the dehydration of the S-form of NAD(P)HX at the expense of ADP, which is converted to AMP. This allows the repair of both epimers of NAD(P)HX, a damaged form of NAD(P)H that is a result of enzymatic or heat-dependent hydration. Catalyzes the epimerization of the S- and R-forms of NAD(P)HX, a damaged form of NAD(P)H that is a result of enzymatic or heat-dependent hydration. This is a prerequisite for the S-specific NAD(P)H-hydrate dehydratase to allow the repair of both epim [...] | 0.948 |
CN09_03380 | ribB | CN09_03380 | CN09_16765 | 2-oxoisovalerate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology | 3,4-dihydroxy-2-butanone 4-phosphate synthase; Catalyzes the conversion of D-ribulose 5-phosphate to formate and 3,4-dihydroxy-2-butanone 4-phosphate | 0.999 |
CN09_03380 | ribD | CN09_03380 | CN09_10375 | 2-oxoisovalerate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology | 5-amino-6-(5-phosphoribosylamino)uracil reductase; Converts 2,5-diamino-6-(ribosylamino)-4(3h)-pyrimidinone 5'- phosphate into 5-amino-6-(ribosylamino)-2,4(1h,3h)-pyrimidinedione 5'- phosphate | 0.999 |
CN09_03985 | CN09_03380 | CN09_03985 | CN09_03380 | Anthranilate synthase; trpE(G); catalyzes the formation of anthranilate from chorismate and glutamine; contains both component I and II; Derived by automated computational analysis using gene prediction method: Protein Homology | 2-oxoisovalerate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology | 0.999 |
CN09_03985 | gcvP | CN09_03985 | CN09_06885 | Anthranilate synthase; trpE(G); catalyzes the formation of anthranilate from chorismate and glutamine; contains both component I and II; Derived by automated computational analysis using gene prediction method: Protein Homology | Glycine dehydrogenase; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein | 0.878 |
CN09_03985 | glyA | CN09_03985 | CN09_10385 | Anthranilate synthase; trpE(G); catalyzes the formation of anthranilate from chorismate and glutamine; contains both component I and II; Derived by automated computational analysis using gene prediction method: Protein Homology | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism | 0.999 |
CN09_03985 | guaA | CN09_03985 | CN09_14055 | Anthranilate synthase; trpE(G); catalyzes the formation of anthranilate from chorismate and glutamine; contains both component I and II; Derived by automated computational analysis using gene prediction method: Protein Homology | Gmp synthase; Catalyzes the synthesis of GMP from XMP | 0.612 |
CN09_03985 | guaB | CN09_03985 | CN09_16005 | Anthranilate synthase; trpE(G); catalyzes the formation of anthranilate from chorismate and glutamine; contains both component I and II; Derived by automated computational analysis using gene prediction method: Protein Homology | inosine-5-monophosphate dehydrogenase; Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth | 0.444 |
CN09_03985 | metH | CN09_03985 | CN09_04750 | Anthranilate synthase; trpE(G); catalyzes the formation of anthranilate from chorismate and glutamine; contains both component I and II; Derived by automated computational analysis using gene prediction method: Protein Homology | Methionine synthase; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate | 0.416 |
CN09_03985 | ribB | CN09_03985 | CN09_16765 | Anthranilate synthase; trpE(G); catalyzes the formation of anthranilate from chorismate and glutamine; contains both component I and II; Derived by automated computational analysis using gene prediction method: Protein Homology | 3,4-dihydroxy-2-butanone 4-phosphate synthase; Catalyzes the conversion of D-ribulose 5-phosphate to formate and 3,4-dihydroxy-2-butanone 4-phosphate | 0.999 |
CN09_03985 | ribD | CN09_03985 | CN09_10375 | Anthranilate synthase; trpE(G); catalyzes the formation of anthranilate from chorismate and glutamine; contains both component I and II; Derived by automated computational analysis using gene prediction method: Protein Homology | 5-amino-6-(5-phosphoribosylamino)uracil reductase; Converts 2,5-diamino-6-(ribosylamino)-4(3h)-pyrimidinone 5'- phosphate into 5-amino-6-(ribosylamino)-2,4(1h,3h)-pyrimidinedione 5'- phosphate | 0.999 |
gcvP | CN09_03380 | CN09_06885 | CN09_03380 | Glycine dehydrogenase; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein | 2-oxoisovalerate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology | 0.890 |
gcvP | CN09_03985 | CN09_06885 | CN09_03985 | Glycine dehydrogenase; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein | Anthranilate synthase; trpE(G); catalyzes the formation of anthranilate from chorismate and glutamine; contains both component I and II; Derived by automated computational analysis using gene prediction method: Protein Homology | 0.878 |
gcvP | glyA | CN09_06885 | CN09_10385 | Glycine dehydrogenase; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein | Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism | 0.999 |
gcvP | guaA | CN09_06885 | CN09_14055 | Glycine dehydrogenase; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein | Gmp synthase; Catalyzes the synthesis of GMP from XMP | 0.555 |