STRINGSTRING
CN09_15495 protein (Agrobacterium rhizogenes) - STRING interaction network
"CN09_15495" - Flagellar motor switch protein FliM in Agrobacterium rhizogenes
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
CN09_15495Flagellar motor switch protein FliM; Derived by automated computational analysis using gene prediction method- Protein Homology (314 aa)    
Predicted Functional Partners:
CN09_15485
Flagellar motor switch protein FliG; Derived by automated computational analysis using gene prediction method- Protein Homology (347 aa)
 
 
  0.999
CN09_15420
Chemotaxis protein CheA; Derived by automated computational analysis using gene prediction method- Protein Homology (763 aa)
   
   
  0.999
CN09_15500
Motility protein A; Derived by automated computational analysis using gene prediction method- Protein Homology (290 aa)
 
   
  0.999
CN09_15490
Flagellar motor switch protein FliN; FliN is one of three proteins (FliG, FliN, FliM) that form the rotor-mounted switch complex (C ring), located at the base of the basal body. This complex interacts with the CheY and CheZ chemotaxis proteins, in addition to contacting components of the motor that determine the direction of flagellar rotation (179 aa)
 
 
  0.999
CN09_15560
Flagellar protein FliL; Controls the rotational direction of flagella during chemotaxis (164 aa)
 
 
  0.997
flgB
With FlgF and C makes up the proximal portion of the flagellar basal body rod; Bradyrhizobium have one thick flagellum and several thin flagella; the proteins in this cluster are associated with the thin flagella; Derived by automated computational analysis using gene prediction method- Protein Homology (130 aa)
 
   
  0.996
CN09_15540
Flagella basal body P-ring formation protein FlgA; Involved in the assembly process of the P-ring formation. It may associate with FlgF on the rod constituting a structure essential for the P-ring assembly or may act as a modulator protein for the P-ring assembly (166 aa)
 
   
  0.995
CN09_15690
Rod-binding protein; Derived by automated computational analysis using gene prediction method- Protein Homology (198 aa)
 
 
  0.995
CN09_15455
Flagellar M-ring protein; The M ring may be actively involved in energy transduction (559 aa)
 
 
  0.994
CN09_15625
Chemotaxis protein; Derived by automated computational analysis using gene prediction method- Protein Homology (535 aa)
 
   
  0.993
Your Current Organism:
Agrobacterium rhizogenes
NCBI taxonomy Id: 359
Other names: A. rhizogenes, ATCC 11325, Agrobacterium biovar 2, Agrobacterium genomic group 10, Agrobacterium genomic species 10, Agrobacterium genomosp. 10, Agrobacterium rhizogenes, Agrobacterium rhizogenes (RI plasmid PRI1724), Agrobacterium rhizogenes (RI plasmid PRI8196), Agrobacterium rhizogenes (RI plasmid PRIA4B), CFBP 5520, CIP 104328, DSM 30148, ICMP 5794, IFO 13257, JCM 20919, LMG 150, NBRC 13257, NCPPB 2991, Rhizobium rhizogenes, Rhizobium sp. LMG 9509
Server load: low (10%) [HD]