STRINGSTRING
pckA protein (Agrobacterium rhizogenes) - STRING interaction network
"pckA" - Phosphoenolpyruvate carboxykinase in Agrobacterium rhizogenes
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
pckAPhosphoenolpyruvate carboxykinase (ATP); Involved in the gluconeogenesis. Catalyzes the conversion of oxaloacetate (OAA) to phosphoenolpyruvate (PEP) through direct phosphoryl transfer between the nucleoside triphosphate and OAA (536 aa)    
Predicted Functional Partners:
fbp
Fructose-1,6-bisphosphatase class 1; Derived by automated computational analysis using gene prediction method- Protein Homology; Belongs to the FBPase class 1 family (333 aa)
   
   
  0.948
CN09_17525
Transcriptional regulator; Derived by automated computational analysis using gene prediction method- Protein Homology (249 aa)
         
  0.918
CN09_14585
Malic enzyme; NADP-dependent; catalyzes the oxidative decarboxylation of malate to form pyruvate; decarboxylates oxaloacetate; Derived by automated computational analysis using gene prediction method- Protein Homology (761 aa)
   
   
  0.903
CN09_06325
Malic enzyme; NADP-dependent; catalyzes the oxidative decarboxylation of malate to form pyruvate; decarboxylates oxaloacetate; Derived by automated computational analysis using gene prediction method- Protein Homology (770 aa)
   
   
  0.903
CN09_06240
Fumarate hydratase class I; Catalyzes the reversible hydration of fumarate to (S)- malate; Belongs to the class-I fumarase family (535 aa)
   
   
  0.901
glcB
Malate synthase G; Involved in the glycolate utilization. Catalyzes the condensation and subsequent hydrolysis of acetyl-coenzyme A (acetyl-CoA) and glyoxylate to form malate and CoA; Belongs to the malate synthase family. GlcB subfamily (722 aa)
   
   
  0.895
CN09_17085
Pyruvate, phosphate dikinase; Catalyzes the formation of phosphoenolpyruvate from pyruvate; Derived by automated computational analysis using gene prediction method- Protein Homology; Belongs to the PEP-utilizing enzyme family (888 aa)
   
   
  0.893
mdh
Malate dehydrogenase; Catalyzes the reversible oxidation of malate to oxaloacetate (320 aa)
 
   
  0.874
CN09_17515
Peptide chain release factor I; Derived by automated computational analysis using gene prediction method- Protein Homology (144 aa)
   
        0.872
CN09_02010
Pyruvate kinase; Derived by automated computational analysis using gene prediction method- Protein Homology; Belongs to the pyruvate kinase family (479 aa)
 
   
  0.852
Your Current Organism:
Agrobacterium rhizogenes
NCBI taxonomy Id: 359
Other names: A. rhizogenes, ATCC 11325, Agrobacterium biovar 2, Agrobacterium genomic group 10, Agrobacterium genomic species 10, Agrobacterium genomosp. 10, Agrobacterium rhizogenes, Agrobacterium rhizogenes (RI plasmid PRI1724), Agrobacterium rhizogenes (RI plasmid PRI8196), Agrobacterium rhizogenes (RI plasmid PRIA4B), CFBP 5520, CIP 104328, DSM 30148, ICMP 5794, IFO 13257, JCM 20919, LMG 150, NBRC 13257, NCPPB 2991, Rhizobium rhizogenes, Rhizobium sp. LMG 9509
Server load: low (8%) [HD]