STRINGSTRING
CN09_18965 protein (Agrobacterium rhizogenes) - STRING interaction network
"CN09_18965" - Aminotransferase in Agrobacterium rhizogenes
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
CN09_18965Aminotransferase; Catalyzes the formation of oxalozcetate and L-glutamate from L-aspartate and 2-oxoglutarate; Derived by automated computational analysis using gene prediction method- Protein Homology (411 aa)    
Predicted Functional Partners:
CN09_01825
Glutamate synthase; Derived by automated computational analysis using gene prediction method- Protein Homology (1574 aa)
   
 
  0.979
CN09_18970
Aldehyde dehydrogenase; Derived by automated computational analysis using gene prediction method- Protein Homology (510 aa)
   
   
  0.883
CN09_18960
Membrane protein; Derived by automated computational analysis using gene prediction method- Protein Homology (1011 aa)
   
 
  0.830
CN09_04380
Aminotransferase; Catalyzes the formation of oxalozcetate and L-glutamate from L-aspartate and 2-oxoglutarate; Derived by automated computational analysis using gene prediction method- Protein Homology (400 aa)
 
     
0.759
CN09_18975
Uncharacterized protein; Derived by automated computational analysis using gene prediction method- Protein Homology (463 aa)
   
        0.748
CN09_15290
Hemagglutinin; Derived by automated computational analysis using gene prediction method- Protein Homology (1225 aa)
         
  0.587
CN09_18980
LysR family transcriptional regulator; Derived by automated computational analysis using gene prediction method- Protein Homology (302 aa)
         
  0.528
CN09_03985
Anthranilate synthase; trpE(G); catalyzes the formation of anthranilate from chorismate and glutamine; contains both component I and II; Derived by automated computational analysis using gene prediction method- Protein Homology (729 aa)
     
 
  0.479
gcvP
Glycine dehydrogenase (decarboxylating); The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein; Belongs to the GcvP family (954 aa)
   
   
  0.458
CN09_08145
Homoserine dehydrogenase; Derived by automated computational analysis using gene prediction method- Protein Homology (439 aa)
   
 
  0.426
Your Current Organism:
Agrobacterium rhizogenes
NCBI taxonomy Id: 359
Other names: A. rhizogenes, ATCC 11325, Agrobacterium biovar 2, Agrobacterium genomic group 10, Agrobacterium genomic species 10, Agrobacterium genomosp. 10, Agrobacterium rhizogenes, Agrobacterium rhizogenes (RI plasmid PRI1724), Agrobacterium rhizogenes (RI plasmid PRI8196), Agrobacterium rhizogenes (RI plasmid PRIA4B), CFBP 5520, CIP 104328, DSM 30148, ICMP 5794, IFO 13257, JCM 20919, LMG 150, NBRC 13257, NCPPB 2991, Rhizobium rhizogenes, Rhizobium sp. LMG 9509
Server load: low (11%) [HD]