STRINGSTRING
atpD protein (Agrobacterium rhizogenes) - STRING interaction network
"atpD" - ATP synthase subunit beta in Agrobacterium rhizogenes
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
atpDATP synthase subunit beta; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits (476 aa)    
Predicted Functional Partners:
atpG
ATP synthase gamma chain; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex (294 aa)
 
  0.999
atpA
ATP synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit (509 aa)
 
 
0.999
atpC
ATP synthase epsilon chain; Produces ATP from ADP in the presence of a proton gradient across the membrane (135 aa)
 
 
  0.999
atpH
ATP synthase subunit delta; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation (188 aa)
 
 
  0.999
atpB
ATP synthase subunit a; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane (250 aa)
 
 
  0.999
polA
DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5’-3’ exonuclease activity (1000 aa)
   
   
  0.999
atpE
ATP synthase subunit c; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation (75 aa)
 
 
  0.992
guaA
GMP synthase [glutamine-hydrolyzing]; Catalyzes the synthesis of GMP from XMP (520 aa)
   
   
  0.985
CN09_17085
Pyruvate, phosphate dikinase; Catalyzes the formation of phosphoenolpyruvate from pyruvate; Derived by automated computational analysis using gene prediction method- Protein Homology; Belongs to the PEP-utilizing enzyme family (888 aa)
         
  0.975
fusA
Elongation factor G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post- translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome (699 aa)
 
   
  0.973
Your Current Organism:
Agrobacterium rhizogenes
NCBI taxonomy Id: 359
Other names: A. rhizogenes, ATCC 11325, Agrobacterium biovar 2, Agrobacterium genomic group 10, Agrobacterium genomic species 10, Agrobacterium genomosp. 10, Agrobacterium rhizogenes, Agrobacterium rhizogenes (RI plasmid PRI1724), Agrobacterium rhizogenes (RI plasmid PRI8196), Agrobacterium rhizogenes (RI plasmid PRIA4B), CFBP 5520, CIP 104328, DSM 30148, ICMP 5794, IFO 13257, JCM 20919, LMG 150, NBRC 13257, NCPPB 2991, Rhizobium rhizogenes, Rhizobium sp. LMG 9509
Server load: low (11%) [HD]