STRINGSTRING
CN09_32065 protein (Agrobacterium rhizogenes) - STRING interaction network
"CN09_32065" - ROK family transcriptional regulator in Agrobacterium rhizogenes
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
CN09_32065ROK family transcriptional regulator; Derived by automated computational analysis using gene prediction method- Protein Homology (400 aa)    
Predicted Functional Partners:
CN09_24995
Acyl-CoA synthetase; Derived by automated computational analysis using gene prediction method- Protein Homology (685 aa)
         
  0.870
CN09_17085
Pyruvate, phosphate dikinase; Catalyzes the formation of phosphoenolpyruvate from pyruvate; Derived by automated computational analysis using gene prediction method- Protein Homology; Belongs to the PEP-utilizing enzyme family (888 aa)
     
 
  0.866
CN09_14585
Malic enzyme; NADP-dependent; catalyzes the oxidative decarboxylation of malate to form pyruvate; decarboxylates oxaloacetate; Derived by automated computational analysis using gene prediction method- Protein Homology (761 aa)
         
  0.828
CN09_06325
Malic enzyme; NADP-dependent; catalyzes the oxidative decarboxylation of malate to form pyruvate; decarboxylates oxaloacetate; Derived by automated computational analysis using gene prediction method- Protein Homology (770 aa)
         
  0.828
CN09_32060
Epimerase; Derived by automated computational analysis using gene prediction method- Protein Homology (294 aa)
 
     
  0.812
CN09_22360
Urea carboxylase; Derived by automated computational analysis using gene prediction method- Protein Homology (1178 aa)
   
   
  0.783
cpsB
Mannose-1-phosphate guanyltransferase; Capsular polysaccharide colanic acid biosynthesis protein; catalyzes the formation of GDP-mannose from GTP and alpha-D-mannose 1-phosphate; Derived by automated computational analysis using gene prediction method- Protein Homology; Belongs to the mannose-6-phosphate isomerase type 2 family (475 aa)
         
  0.736
CN09_32255
NADH oxidase; Derived by automated computational analysis using gene prediction method- Protein Homology (341 aa)
         
  0.729
CN09_23490
Tagatose-bisphosphate aldolase; Derived by automated computational analysis using gene prediction method- Protein Homology (432 aa)
              0.725
CN09_23485
Sugar kinase; Derived by automated computational analysis using gene prediction method- Protein Homology (317 aa)
         
  0.708
Your Current Organism:
Agrobacterium rhizogenes
NCBI taxonomy Id: 359
Other names: A. rhizogenes, ATCC 11325, Agrobacterium biovar 2, Agrobacterium genomic group 10, Agrobacterium genomic species 10, Agrobacterium genomosp. 10, Agrobacterium rhizogenes, Agrobacterium rhizogenes (RI plasmid PRI1724), Agrobacterium rhizogenes (RI plasmid PRI8196), Agrobacterium rhizogenes (RI plasmid PRIA4B), CFBP 5520, CIP 104328, DSM 30148, ICMP 5794, IFO 13257, JCM 20919, LMG 150, NBRC 13257, NCPPB 2991, Rhizobium rhizogenes, Rhizobium sp. LMG 9509
Server load: low (4%) [HD]