STRINGSTRING
atpD protein (Wigglesworthia glossinidia Gb) - STRING interaction network
"atpD" - F0F1 ATP synthase subunit beta in Wigglesworthia glossinidia Gb
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
atpDF0F1 ATP synthase subunit beta; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits (462 aa)    
Predicted Functional Partners:
atpG
Hypothetical protein; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex (287 aa)
  0.999
atpC
Hypothetical protein; Produces ATP from ADP in the presence of a proton gradient across the membrane (138 aa)
 
  0.999
atpF
Hypothetical protein; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation (161 aa)
   
  0.999
atpA
F0F1 ATP synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit (510 aa)
 
0.999
atpH
Hypothetical protein; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation (176 aa)
   
  0.999
atpB
F0F1 ATP synthase subunit A; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane (278 aa)
 
  0.999
atpE
F0F1 ATP synthase subunit C; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation (79 aa)
   
  0.999
adk
Hypothetical protein; Catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP. Plays an important role in cellular energy homeostasis and in adenine nucleotide metabolism (210 aa)
     
 
  0.992
groL
Hypothetical protein; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions (546 aa)
   
 
  0.941
rplC
50S ribosomal protein L3; One of the primary rRNA binding proteins, it binds directly near the 3’-end of the 23S rRNA, where it nucleates assembly of the 50S subunit (215 aa)
   
 
  0.936
Your Current Organism:
Wigglesworthia glossinidia Gb
NCBI taxonomy Id: 36870
Other names: Glossina brevipalpis P-endosymbiont, W. glossinidia endosymbiont of Glossina brevipalpis, Wigglesworthia brevipalpis, Wigglesworthia glossinidia Gb, Wigglesworthia glossinidia brevipalpis, Wigglesworthia glossinidia endosymbiont of Glossina brevipalpis
Server load: low (11%) [HD]