STRINGSTRING
truB protein (Wigglesworthia glossinidia Gb) - STRING interaction network
"truB" - Hypothetical protein in Wigglesworthia glossinidia Gb
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
truBHypothetical protein; Responsible for synthesis of pseudouridine from uracil- 55 in the psi GC loop of transfer RNAs (327 aa)    
Predicted Functional Partners:
truA
Hypothetical protein; Formation of pseudouridine at positions 38, 39 and 40 in the anticodon stem and loop of transfer RNAs (264 aa)
 
  0.994
infB
Translation initiation factor IF-2; One of the essential components for the initiation of protein synthesis. Protects formylmethionyl-tRNA from spontaneous hydrolysis and promotes its binding to the 30S ribosomal subunits. Also involved in the hydrolysis of GTP during the formation of the 70S ribosomal complex (841 aa)
 
 
  0.986
rbfA
Hypothetical protein; Associates with free 30S ribosomal subunits (but not with 30S subunits that are part of 70S ribosomes or polysomes). Essential for efficient processing of 16S rRNA. May interact with the 5’-terminal helix region of 16S rRNA (125 aa)
   
   
  0.959
rpsA
30S ribosomal protein S1; Binds mRNA; thus facilitating recognition of the initiation point. It is needed to translate mRNA with a short Shine-Dalgarno (SD) purine-rich sequence (554 aa)
   
 
  0.952
ftsJ
Hypothetical protein; Specifically methylates the uridine in position 2552 of 23S rRNA at the 2’-O position of the ribose in the fully assembled 50S ribosomal subunit (203 aa)
 
 
  0.941
rpsO
Hypothetical protein; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it helps nucleate assembly of the platform of the 30S subunit by binding and bridging several RNA helices of the 16S rRNA (89 aa)
   
   
  0.940
guaA
GMP synthase; Catalyzes the synthesis of GMP from XMP (522 aa)
     
   
  0.931
gltX
Hypothetical protein; Catalyzes the attachment of glutamate to tRNA(Glu) in a two-step reaction- glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu) (473 aa)
 
   
  0.930
ksgA
Hypothetical protein; Specifically dimethylates two adjacent adenosines (A1518 and A1519) in the loop of a conserved hairpin near the 3’-end of 16S rRNA in the 30S particle. May play a critical role in biogenesis of 30S subunits (261 aa)
   
 
  0.924
rpoA
DNA-directed RNA polymerase subunit alpha; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates (328 aa)
   
 
  0.902
Your Current Organism:
Wigglesworthia glossinidia Gb
NCBI taxonomy Id: 36870
Other names: Glossina brevipalpis P-endosymbiont, W. glossinidia endosymbiont of Glossina brevipalpis, Wigglesworthia brevipalpis, Wigglesworthia glossinidia Gb, Wigglesworthia glossinidia brevipalpis, Wigglesworthia glossinidia endosymbiont of Glossina brevipalpis
Server load: low (10%) [HD]