STRINGSTRING
greA protein (Wigglesworthia glossinidia Gb) - STRING interaction network
"greA" - Hypothetical protein in Wigglesworthia glossinidia Gb
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
greAHypothetical protein; Necessary for efficient RNA polymerase transcription elongation past template-encoded arresting sites. The arresting sites in DNA have the property of trapping a certain fraction of elongating RNA polymerases that pass through, resulting in locked ternary complexes. Cleavage of the nascent transcript by cleavage factors such as GreA or GreB allows the resumption of elongation from the new 3’terminus. GreA releases sequences of 2 to 3 nucleotides (158 aa)    
Predicted Functional Partners:
rpoC
DNA-directed RNA polymerase subunit beta’; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates (1405 aa)
       
 
  0.942
carB
Hypothetical protein (1084 aa)
     
 
  0.873
rpoA
DNA-directed RNA polymerase subunit alpha; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates (328 aa)
     
 
  0.848
rpoZ
Hypothetical protein; Promotes RNA polymerase assembly. Latches the N- and C- terminal regions of the beta’ subunit thereby facilitating its interaction with the beta and alpha subunits (62 aa)
   
 
  0.816
rpoB
Hypothetical protein; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates (1342 aa)
       
 
  0.810
ftsJ
Hypothetical protein; Specifically methylates the uridine in position 2552 of 23S rRNA at the 2’-O position of the ribose in the fully assembled 50S ribosomal subunit (203 aa)
         
  0.805
rho
Transcription termination factor Rho; Facilitates transcription termination by a mechanism that involves Rho binding to the nascent RNA, activation of Rho’s RNA-dependent ATPase activity, and release of the mRNA from the DNA template (419 aa)
     
 
  0.801
alaS
Hypothetical protein; Catalyzes the attachment of alanine to tRNA(Ala) in a two-step reaction- alanine is first activated by ATP to form Ala- AMP and then transferred to the acceptor end of tRNA(Ala). Also edits incorrectly charged Ser-tRNA(Ala) and Gly-tRNA(Ala) via its editing domain (873 aa)
         
  0.799
pheT
Hypothetical protein (803 aa)
   
   
  0.787
murI
Hypothetical protein; Provides the (R)-glutamate required for cell wall biosynthesis (268 aa)
     
 
  0.780
Your Current Organism:
Wigglesworthia glossinidia Gb
NCBI taxonomy Id: 36870
Other names: Glossina brevipalpis P-endosymbiont, W. glossinidia endosymbiont of Glossina brevipalpis, Wigglesworthia brevipalpis, Wigglesworthia glossinidia Gb, Wigglesworthia glossinidia brevipalpis, Wigglesworthia glossinidia endosymbiont of Glossina brevipalpis
Server load: low (7%) [HD]