STRINGSTRING
ung protein (Wigglesworthia glossinidia Gb) - STRING interaction network
"ung" - uracil-DNA glycosylase in Wigglesworthia glossinidia Gb
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
unguracil-DNA glycosylase; Excises uracil residues from the DNA which can arise as a result of misincorporation of dUMP residues by DNA polymerase or due to deamination of cytosine (174 aa)    
Predicted Functional Partners:
dnaN
Hypothetical protein; DNA polymerase III is a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria. This DNA polymerase also exhibits 3’ to 5’ exonuclease activity. The beta chain is required for initiation of replication once it is clamped onto DNA, it slides freely (bidirectional and ATP- independent) along duplex DNA (369 aa)
   
 
  0.970
xthA
Exonuclease III (267 aa)
   
  0.940
ndk
Hypothetical protein; Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate (142 aa)
     
 
  0.864
pheT
Hypothetical protein (803 aa)
     
 
  0.816
thyA
Thymidylate synthase; Provides the sole de novo source of dTMP for DNA biosynthesis (264 aa)
   
 
  0.786
polA
Hypothetical protein (289 aa)
   
   
  0.765
nth
Hypothetical protein; DNA repair enzyme that has both DNA N-glycosylase activity and AP-lyase activity. The DNA N-glycosylase activity releases various damaged pyrimidines from DNA by cleaving the N- glycosidic bond, leaving an AP (apurinic/apyrimidinic) site. The AP-lyase activity cleaves the phosphodiester bond 3’ to the AP site by a beta-elimination, leaving a 3’-terminal unsaturated sugar and a product with a terminal 5’-phosphate (209 aa)
   
 
  0.758
dut
Deoxyuridine 5’-triphosphate nucleotidohydrolase; This enzyme is involved in nucleotide metabolism- it produces dUMP, the immediate precursor of thymidine nucleotides and it decreases the intracellular concentration of dUTP so that uracil cannot be incorporated into DNA (153 aa)
   
 
  0.748
folA
Hypothetical protein; Key enzyme in folate metabolism. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis (162 aa)
   
 
  0.667
nrdE
Ribonucleotide-diphosphate reductase subunit alpha; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides (704 aa)
     
 
  0.658
Your Current Organism:
Wigglesworthia glossinidia Gb
NCBI taxonomy Id: 36870
Other names: Glossina brevipalpis P-endosymbiont, W. glossinidia endosymbiont of Glossina brevipalpis, Wigglesworthia brevipalpis, Wigglesworthia glossinidia Gb, Wigglesworthia glossinidia brevipalpis, Wigglesworthia glossinidia endosymbiont of Glossina brevipalpis
Server load: low (21%) [HD]