STRINGSTRING
IAA10 protein (Arabidopsis thaliana) - STRING interaction network
"IAA10" - Auxin-responsive protein IAA10 in Arabidopsis thaliana
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
IAA10Auxin-responsive protein IAA10; Aux/IAA proteins are short-lived transcriptional factors that function as repressors of early auxin response genes at low auxin concentrations. Repression is thought to result from the interaction with auxin response factors (ARFs), proteins that bind to the auxin-responsive promoter element (AuxRE). Formation of heterodimers with ARF proteins may alter their ability to modulate early auxin response genes expression (261 aa)    
Predicted Functional Partners:
NPH4
Auxin response factor 7; Auxin response factors (ARFs) are transcriptional factors that binds specifically to the DNA sequence 5’-TGTCTC-3’ found in the auxin-responsive promoter elements (AuxREs). Seems to act as transcriptional activator. Formation of heterodimers with Aux/IAA proteins may alter their ability to modulate early auxin response genes expression. Required for differential growth responses of aerial tissues. Involved in ethylene responses. Regulates lateral root formation through direct regulation of LBD16 and/or LBD29. Functionally redundant with ARF19. Mediates embryo a [...] (1165 aa)
       
  0.999
MP
MONOPTEROS; Auxin response factors (ARFs) are transcriptional factors that binds specifically to the DNA sequence 5’-TGTCTC-3’ found in the auxin-responsive promoter elements (AuxREs). Seems to act as transcriptional activator. Formation of heterodimers with Aux/IAA proteins may alter their ability to modulate early auxin response genes expression. Mediates embryo axis formation and vascular tissues differentiation. Functionally redundant with ARF7. May be necessary to counteract AMP1 activity (902 aa)
       
  0.999
ARF19
Auxin response factor 19; Auxin response factors (ARFs) are transcriptional factors that binds specifically to the DNA sequence 5’-TGTCTC-3’ found in the auxin-responsive promoter elements (AuxREs). Could act as transcriptional activator or repressor. Formation of heterodimers with Aux/IAA proteins may alter their ability to modulate early auxin response genes expression. Involved in ethylene responses. Regulates lateral root formation through direct regulation of LBD16 and/or LBD29. Functionally redundant with ARF7 (1086 aa)
       
 
  0.997
ARF8
Auxin response factor 8; Auxin response factors (ARFs) are transcriptional factors that binds specifically to the DNA sequence 5’-TGTCTC-3’ found in the auxin-responsive promoter elements (AuxREs). Seems to act as transcriptional activator. Formation of heterodimers with Aux/IAA proteins may alter their ability to modulate early auxin response genes expression. Regulates both stamen and gynoecium maturation. Promotes jasmonic acid production. Partially redundant with ARF6. Involved in fruit initiation. Acts as an inhibitor to stop further carpel development in the absence of fertilizat [...] (811 aa)
       
 
  0.997
ARF6
Auxin response factor 6; Auxin response factors (ARFs) are transcriptional factors that binds specifically to the DNA sequence 5’-TGTCTC-3’ found in the auxin-responsive promoter elements (AuxREs). Seems to act as transcriptional activator. Formation of heterodimers with Aux/IAA proteins may alter their ability to modulate early auxin response genes expression. Regulates both stamen and gynoecium maturation. Promotes jasmonic acid production. Partially redundant with ARF8 (935 aa)
       
 
  0.997
IAA8
Auxin-responsive protein IAA8; Aux/IAA proteins are short-lived transcriptional factors that function as repressors of early auxin response genes at low auxin concentrations. Repression is thought to result from the interaction with auxin response factors (ARFs), proteins that bind to the auxin-responsive promoter element (AuxRE). Formation of heterodimers with ARF proteins may alter their ability to modulate early auxin response genes expression (338 aa)
       
 
0.996
ARF9
Auxin response factor 9; Auxin response factors (ARFs) are transcriptional factors that binds specifically to the DNA sequence 5’-TGTCTC-3’ found in the auxin-responsive promoter elements (AuxREs). Could act as transcriptional activator or repressor. Formation of heterodimers with Aux/IAA proteins may alter their ability to modulate early auxin response genes expression (638 aa)
       
 
0.996
ARF2
Auxin response factor 2; Auxin response factors (ARFs) are transcriptional factors that binds specifically to the DNA sequence 5’-TGTCTC-3’ found in the auxin-responsive promoter elements (AuxREs). Could act as transcriptional activator or repressor. Formation of heterodimers with Aux/IAA proteins may alter their ability to modulate early auxin response genes expression. Promotes flowering, stamen development, floral organ abscission and fruit dehiscence. Functions independently of ethylene and cytokinin response pathways. May act as a repressor of cell division and organ growth (859 aa)
       
 
0.996
ARF11
Auxin response factor 11; Auxin response factors (ARFs) are transcriptional factors that binds specifically to the DNA sequence 5’-TGTCTC-3’ found in the auxin-responsive promoter elements (AuxREs). Could act as transcriptional activator or repressor. Formation of heterodimers with Aux/IAA proteins may alter their ability to modulate early auxin response genes expression (622 aa)
       
 
0.996
IAA9
Auxin-responsive protein IAA9; Aux/IAA proteins are short-lived transcriptional factors that function as repressors of early auxin response genes at low auxin concentrations. Repression is thought to result from the interaction with auxin response factors (ARFs), proteins that bind to the auxin-responsive promoter element (AuxRE). Formation of heterodimers with ARF proteins may alter their ability to modulate early auxin response genes expression (338 aa)
       
 
0.996
Your Current Organism:
Arabidopsis thaliana
NCBI taxonomy Id: 3702
Other names: A. thaliana, Arabidopsis thaliana, Arabidopsis thaliana (L.) Heynh., mouse-ear cress, thale cress, thale-cress
Server load: low (10%) [HD]