• Version:
  • 11.0 (preview - - version 10.5 still available here)
STRINGSTRING
PIN7 protein (Arabidopsis thaliana) - STRING interaction network
"PIN7" - Auxin efflux carrier family protein in Arabidopsis thaliana
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
PIN7Auxin efflux carrier family protein; Encodes a novel component of auxin efflux that is located apically in the basal cell and is involved during embryogenesis in setting up the apical-basal axis in the embryo. It is also involved in pattern specification during root development. In roots, it is expressed at lateral and basal membranes of provascular cells in the meristem and elongation zone, whereas in the columella cells it coincides with the PIN3 domain. Plasma membrane-localized PIN proteins mediate a saturable efflux of auxin. PINs mediate auxin efflux from mammalian and yeast c [...] (619 aa)    
Predicted Functional Partners:
AUX1
Transmembrane amino acid transporter family protein; Carrier protein involved in proton-driven auxin influx. Mediates the formation of auxin gradient from developing leaves (site of auxin biosynthesis) to tips by contributing to the loading of auxin in vascular tissues and facilitating acropetal (base to tip) auxin transport within inner tissues of the root apex, and basipetal (tip to base) auxin transport within outer tissues of the root apex. Unloads auxin from the mature phloem to deliver the hormone to the root meristem via the protophloem cell files. Coordinated subcellular locali [...] (485 aa)
     
   
  0.933
LAX3
Auxin transporter-like protein 3; Carrier protein involved in proton-driven auxin influx. Mediates the formation of auxin gradient from developing leaves (site of auxin biosynthesis) to tips by contributing to the loading of auxin in vascular tissues and facilitating acropetal (base to tip) auxin transport within inner tissues of the root apex, and basipetal (tip to base) auxin transport within outer tissues of the root apex (By similarity) (470 aa)
     
   
  0.850
ABCB19
ABC transporter B family member 19; Auxin efflux transporter that acts as a negative regulator of light signaling to promote hypocotyl elongation. Mediates the accumulation of chlorophyll and anthocyanin, as well as the expression of genes in response to light. Participates in auxin efflux and thus regulates the polar auxin basipetal transport (from auxin-producing leaves to auxin-sensitive tissues, and from root tips to root elongating zone). Involved in divers auxin-mediated responses including gravitropism, phototropism and lateral root formation (1252 aa)
     
   
  0.833
D6PK
Serine/threonine-protein kinase D6PK; Protein kinase that regulates the auxin transport activity of PIN auxin efflux facilitators by direct phosphorylation. D6PK-mediated PIN phosphorylation promotes auxin transport in the hypocotyl and this is a prerequisite for PHOT1- dependent hypocotyl bending. Phosphorylates PIN1, PIN2, PIN3, PIN4 and PIN7 in vitro and PIN1 in vivo (498 aa)
       
 
  0.812
TIR1
Protein TRANSPORT INHIBITOR RESPONSE 1; Encodes an auxin receptor that mediates auxin-regulated transcription. It contains leucine-rich repeats and an F-box and interacts with ASK1, ASK2 and AtCUL1 to form SCF-TIR1, an SCF ubiquitin ligase complex. Related to yeast Grr1p and human SKP2 proteins, involved in ubiquitin-mediated processes. Required for normal response to auxin and repressed in response to flagellin. As part of the SCF complex and in the presence of auxin, TIR1 interacts with Aux/IAA transcriptional repressor proteins and mediates their degradation (594 aa)
           
  0.735
PID
Encodes a protein serine/threonine kinase that may act as a positive regulator of cellular auxin efflux, as a a binary switch for PIN polarity, and as a negative regulator of auxin signaling. Recessive mutants exhibit similar phenotypes as pin-formed mutants in flowers and inflorescence but distinct phenotypes in cotyledons and leaves. Expressed in the vascular tissue proximal to root and shoot meristems, shoot apex, and embryos. Expression is induced by auxin. Overexpression of the gene results in phenotypes in the root and shoot similar to those found in auxin-insensitive mutants. Th [...] (438 aa)
           
  0.731
MP
Transcriptional factor B3 family protein / auxin-responsive factor AUX/IAA-related; Auxin response factors (ARFs) are transcriptional factors that bind specifically to the DNA sequence 5’-TGTCTC-3’ found in the auxin-responsive promoter elements (AuxREs). Seems to act as transcriptional activator. Formation of heterodimers with Aux/IAA proteins may alter their ability to modulate early auxin response genes expression. Mediates embryo axis formation and vascular tissues differentiation. Functionally redundant with ARF7. May be necessary to counteract AMP1 activity (902 aa)
           
  0.674
SHY2
AUX/IAA transcriptional regulator family protein; Aux/IAA proteins are short-lived transcriptional factors that function as repressors of early auxin response genes at low auxin concentrations. Repression is thought to result from the interaction with auxin response factors (ARFs), proteins that bind to the auxin-responsive promoter element (AuxRE). Plays a central role in auxin regulation of root growth, in gravitropism, and in lateral root formation. Regulated by an auxin- induced protein turnover. Formation of heterodimers with ARF proteins may alter their ability to modulate early [...] (189 aa)
     
   
  0.669
GN
ARF guanine-nucleotide exchange factor GNOM; Activates the ARF proteins by exchanging bound GDP for free GTP. Plays a role in vesicular protein sorting. Acts as the major regulator of endosomal vesicle trafficking but is also involved in the endocytosis process. Could function redundantly with GNL1 in the retrograde Golgi to endoplasmic reticulum trafficking. Regulates vesicle trafficking required for the coordinated polar localization of auxin efflux carriers which in turn determines the direction of auxin flow. Mediates the sorting of PIN1 from endosomal compartments to the basal pla [...] (1451 aa)
           
  0.667
WAG2
Serine/threonine-protein kinase WAG2; The WAG2 and its homolog, WAG1 each encodes protein-serine/threonine kinase that are nearly 70% identical to PsPK3 protein. All three together with CsPK3 belong to PsPK3-type kinases. At the N-terminus, all four possess a serine/threonine-rich domain. They are closely related to Arabidopsis kinases PINOID. wag1/wag2 double mutants exhibit a pronounced wavy root phenotype when grown vertically on agar plates (while wild-type plants develop wavy roots only on plates inclined to angles less than 90 degrees), indicating an overlapping role for WAG1 and [...] (480 aa)
     
   
  0.662
Your Current Organism:
Arabidopsis thaliana
NCBI taxonomy Id: 3702
Other names: A. thaliana, Arabidopsis thaliana, Arabidopsis thaliana (L.) Heynh., mouse-ear cress, thale cress, thale-cress
Server load: low (12%) [HD]