STRINGSTRING
AT1G47830 protein (Arabidopsis thaliana) - STRING interaction network
"AT1G47830" - AP-2 complex subunit sigma in Arabidopsis thaliana
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
AT1G47830AP-2 complex subunit sigma; Subunit of the adaptor protein complex 2 (AP-2). Adaptor protein complexes function in protein transport via transport vesicles in different membrane traffic pathways. Adaptor protein complexes are vesicle coat components and appear to be involved in cargo selection and vesicle formation. AP-2 is involved in clathrin-dependent endocytosis in which cargo proteins are incorporated into vesicles surrounded by clathrin (clathrin-coated vesicles, CCVs) which are destined for fusion with the early endosome. The complex binds polyphosphoinositides (By similarity) (142 aa)    
Predicted Functional Partners:
alpha-ADR
Alpha-adaptin; Subunit of the adaptor protein complex 2 (AP-2). Adaptor protein complexes function in protein transport via transport vesicles in different membrane traffic pathways. Adaptor protein complexes are vesicle coat components and appear to be involved in cargo selection and vesicle formation. AP-2 is involved in clathrin-dependent endocytosis in which cargo proteins are incorporated into vesicles surrounded by clathrin (clathrin-coated vesicles, CCVs) which are destined for fusion with the early endosome. The complex binds polyphosphoinositides (By similarity) (1012 aa)
     
  0.999
AT4G11380
Adaptin family protein; Subunit of clathrin-associated adaptor protein complex that plays a role in protein sorting in the late-Golgi/trans-Golgi network (TGN) and/or endosomes. The AP complexes mediate both the recruitment of clathrin to membranes and the recognition of sorting signals within the cytosolic tails of transmembrane cargo molecules (By similarity) (916 aa)
       
  0.998
AT5G22780
AP-2 complex subunit alpha-2; Subunit of the adaptor protein complex 2 (AP-2). Adaptor protein complexes function in protein transport via transport vesicles in different membrane traffic pathways. Adaptor protein complexes are vesicle coat components and appear to be involved in cargo selection and vesicle formation. AP-2 is involved in clathrin-dependent endocytosis in which cargo proteins are incorporated into vesicles surrounded by clathrin (clathrin-coated vesicles, CCVs) which are destined for fusion with the early endosome. The complex binds polyphosphoinositides (1013 aa)
     
  0.997
AT4G23460
Adaptin family protein; Subunit of clathrin-associated adaptor protein complex that plays a role in protein sorting in the late-Golgi/trans-Golgi network (TGN) and/or endosomes. The AP complexes mediate both the recruitment of clathrin to membranes and the recognition of sorting signals within the cytosolic tails of transmembrane cargo molecules (By similarity) (893 aa)
       
  0.996
AT5G46630
AP-2 complex subunit mu-1; Subunit of the adaptor protein complex 2 (AP-2). Adaptor protein complexes function in protein transport via transport vesicles in different membrane traffic pathways. Adaptor protein complexes are vesicle coat components and appear to be involved in cargo selection and vesicle formation. AP-2 is involved in clathrin-dependent endocytosis in which cargo proteins are incorporated into vesicles surrounded by clathrin (clathrin-coated vesicles, CCVs) which are destined for fusion with the early endosome. AP-2 recognizes Y-X-X-Phi endocytosis signal motif within [...] (441 aa)
     
  0.992
AT5G11490
Adaptin family protein; Subunit of clathrin-associated adaptor protein complex that plays a role in protein sorting in the late-Golgi/trans-Golgi network (TGN) and/or endosomes. The AP complexes mediate both the recruitment of clathrin to membranes and the recognition of sorting signals within the cytosolic tails of transmembrane cargo molecules (By similarity) (850 aa)
       
 
  0.962
AT4G24550
AP-4 complex subunit mu-1; Subunit of novel type of clathrin- or non-clathrin- associated protein coat involved in targeting proteins from the trans-Golgi network (TGN) to the endosomal-lysosomal system (451 aa)
     
 
  0.961
AT2G20790
Clathrin adaptor complexes medium subunit family protein (613 aa)
     
 
  0.961
HAP13
HAPLESS 13; Subunit of clathrin-associated adaptor protein complex 1 that plays a role in protein sorting at the trans-Golgi network and early endosomes (TGN/EE). The AP complexes mediate the recruitment of clathrin to membranes and the recognition of sorting signals within the cytosolic tails of transmembrane cargo molecules. Required for KNOLLE localization at the cell plate to mediate cytokinesis. Functions redundantly with AP1M1 in multiple post-Golgi trafficking pathways leading from the TGN to the vacuole, the plasma membrane, and the cell-division plane (428 aa)
     
 
  0.961
AT1G10730
AP-1 complex subunit mu; Subunit of clathrin-associated adaptor protein complex 1 that plays a role in protein sorting at the trans-Golgi network and early endosomes (TGN/EE). The AP complexes mediate the recruitment of clathrin to membranes and the recognition of sorting signals within the cytosolic tails of transmembrane cargo molecules. Functions redundantly with AP1M2 in multiple post-Golgi trafficking pathways leading from the TGN to the vacuole, the plasma membrane, and the cell-division plane (428 aa)
     
 
  0.961
Your Current Organism:
Arabidopsis thaliana
NCBI taxonomy Id: 3702
Other names: A. thaliana, Arabidopsis thaliana, Arabidopsis thaliana (L.) Heynh., mouse-ear cress, thale cress, thale-cress
Server load: low (8%) [HD]