STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
fmtmethionyl-tRNA formyltransferase; Attaches a formyl group to the free amino group of methionyl- tRNA(fMet). The formyl group appears to play a dual role in the initiator identity of N-formylmethionyl-tRNA by promoting its recognition by IF2 and preventing the misappropriation of this tRNA by the elongation apparatus; Belongs to the Fmt family. (315 aa)    
Predicted Functional Partners:
folD
Methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate.
  
 
 0.962
metG
methionyl-tRNA synthetase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation.
  
 
 0.932
purN
Phosphoribosylglycinamide formyltransferase; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate.
 
  
 0.932
Fjoh_4050
PFAM: formyl transferase domain protein.
  
  
 
0.921
glyA
Glycine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism.
     
 0.916
gcvT
Glycine cleavage system T protein; The glycine cleavage system catalyzes the degradation of glycine.
   
 
 0.914
gcvT-2
Aminomethyltransferase; The glycine cleavage system catalyzes the degradation of glycine.
   
 
 0.914
Fjoh_1468
Dihydrofolate reductase; Key enzyme in folate metabolism. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis.
  
 
 0.909
Fjoh_1508
PFAM: homocysteine S-methyltransferase.
    
 0.907
Fjoh_1510
Methionine synthase; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate.
     
 0.901
Your Current Organism:
Flavobacterium johnsoniae
NCBI taxonomy Id: 376686
Other names: F. johnsoniae UW101, Flavobacterium johnsoniae ATCC 17061, Flavobacterium johnsoniae DSM 2064, Flavobacterium johnsoniae IAM 14304, Flavobacterium johnsoniae IFO 14942, Flavobacterium johnsoniae MYX.1.1.1, Flavobacterium johnsoniae NBRC 14942, Flavobacterium johnsoniae NCIB 11054, Flavobacterium johnsoniae UW101, Flavobacterium johnsoniae str. UW101, Flavobacterium johnsoniae strain UW101
Server load: medium (70%) [HD]