STRINGSTRING
fmt protein (Teredinibacter turnerae) - STRING interaction network
"fmt" - methionyl-tRNA formyltransferase in Teredinibacter turnerae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
fmtmethionyl-tRNA formyltransferase; Modifies the free amino group of the aminoacyl moiety of methionyl-tRNA(fMet). The formyl group appears to play a dual role in the initiator identity of N-formylmethionyl-tRNA by- (I) promoting its recognition by IF2 and (II) impairing its binding to EFTu-GTP (321 aa)    
Predicted Functional Partners:
def
Peptide deformylase; Removes the formyl group from the N-terminal Met of newly synthesized proteins. Requires at least a dipeptide for an efficient rate of reaction. N-terminal L-methionine is a prerequisite for activity but the enzyme has broad specificity at other positions (168 aa)
 
  0.996
folD
Tetrahydrofolate dehydrogenase/cyclohydrolase FolD (EC-1.5.1.5 3.5.4.9); Catalyzes the oxidation of 5,10- methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10-methenyltetrahydrofolate to 10- formyltetrahydrofolate (280 aa)
 
 
  0.972
metG
methionyl-tRNA synthetase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation (678 aa)
   
 
  0.957
rsmB
Ribosomal RNA small subunit methyltransferase B (433 aa)
 
   
  0.956
glyA
Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF- independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism (422 aa)
   
 
  0.932
folA
Dihydrofolate reductase; Key enzyme in folate metabolism. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis (173 aa)
 
 
  0.923
purN
Phosphoribosylglycinamide formyltransferase; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate (216 aa)
   
 
 
0.910
metH
B12-dependent methionine synthase (1229 aa)
     
 
  0.902
gcvT
Glycine cleavage system T protein (EC-2.1.2.10); The glycine cleavage system catalyzes the degradation of glycine (363 aa)
     
 
    0.901
TERTU_0034
Potassium transporter peripheral membrane component (483 aa)
   
   
  0.862
Your Current Organism:
Teredinibacter turnerae
NCBI taxonomy Id: 377629
Other names: A. genera incertae sedis, Alteromonadales genera incertae sedis, T. turnerae, T. turnerae T7901, Teredinibacter, Teredinibacter Distel et al. 2002, Teredinibacter turnerae, Teredinibacter turnerae Distel et al. 2002, Teredinibacter turnerae T7901, Teredinibacter turnerae str. T7901, Teredinibacter turnerae strain T7901
Server load: low (7%) [HD]