STRINGSTRING
recA protein (Sulfurovum sp. NBC371) - STRING interaction network
"recA" - Recombinase A in Sulfurovum sp. NBC371
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
recARecombinase A; Can catalyze the hydrolysis of ATP in the presence of single-stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage (347 aa)    
Predicted Functional Partners:
SUN_1378
DNA polymerase IV (422 aa)
   
  0.975
polA
DNA polymerase I (898 aa)
   
  0.969
recQ
ATP-dependent DNA helicase RecQ (592 aa)
     
  0.953
SUN_0725
DNA double-strand break repair protein (373 aa)
   
  0.943
dnaN
DNA polymerase III subunit beta; DNA polymerase III is a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria. This DNA polymerase also exhibits 3’ to 5’ exonuclease activity. The beta chain is required for initiation of replication once it is clamped onto DNA, it slides freely (bidirectional and ATP- independent) along duplex DNA (355 aa)
   
  0.943
topA
DNA topoisomerase I; Releases the supercoiling and torsional tension of DNA, which is introduced during the DNA replication and transcription, by transiently cleaving and rejoining one strand of the DNA duplex. Introduces a single-strand break via transesterification at a target site in duplex DNA. The scissile phosphodiester is attacked by the catalytic tyrosine of the enzyme, resulting in the formation of a DNA-(5’-phosphotyrosyl)-enzyme intermediate and the expulsion of a 3’-OH DNA strand. The free DNA strand then undergoes passage around the unbroken strand, thus removing DNA super [...] (732 aa)
 
  0.942
SUN_0726
DNA double-strand break repair protein (788 aa)
   
  0.898
SUN_0458
DNA polymerase III subunit delta’ (205 aa)
   
  0.862
SUN_0083
Phosphopyruvate hydratase; Catalyzes the reversible conversion of 2- phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis (424 aa)
   
   
  0.842
SUN_0384
ATP-dependent DNA helicase UvrD (688 aa)
   
 
  0.811
Your Current Organism:
Sulfurovum sp. NBC371
NCBI taxonomy Id: 387093
Other names: S. sp. NBC37-1, Sulfurovum, Sulfurovum Inagaki et al. 2004, Sulfurovum NBC37_1, Sulfurovum sp. NBC37-1, Sulfurovum sp. NBC371
Server load: low (7%) [HD]