STRINGSTRING
prs protein (Sulfurovum sp. NBC371) - STRING interaction network
"prs" - Ribose-phosphate pyrophosphokinase in Sulfurovum sp. NBC371
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
prsRibose-phosphate pyrophosphokinase; Involved in the biosynthesis of ribose 1,5-bisphosphate. Catalyzes the transfer of pyrophosphoryl group from ATP to ribose- 5-phosphate to yield phosphoribosyl diphosphate (PRPP) and AMP (311 aa)    
Predicted Functional Partners:
purF
Amidophosphoribosyltransferase; Catalyzes the formation of phosphoribosylamine from phosphoribosylpyrophosphate (PRPP) and glutamine (456 aa)
   
  0.981
hisG
ATP phosphoribosyltransferase catalytic subunit; Catalyzes the condensation of ATP and 5-phosphoribose 1- diphosphate to form N’-(5’-phosphoribosyl)-ATP (PR-ATP). Has a crucial role in the pathway because the rate of histidine biosynthesis seems to be controlled primarily by regulation of HisG enzymatic activity (206 aa)
   
 
  0.955
pyrE
Orotate phosphoribosyltransferase; Catalyzes the transfer of a ribosyl phosphate group from 5-phosphoribose 1-diphosphate to orotate, leading to the formation of orotidine monophosphate (OMP) (201 aa)
   
 
  0.950
SUN_0166
Transketolase; Catalyzes the transfer of a two-carbon ketol group from a ketose donor to an aldose acceptor, via a covalent intermediate with the cofactor thiamine pyrophosphate (659 aa)
   
  0.934
glmU
Bifunctional N-acetylglucosamine-1-phosphate uridyltransferase/glucosamine-1-phosphate acetyltransferase; Catalyzes the last two sequential reactions in the de novo biosynthetic pathway for UDP-N-acetylglucosamine (UDP- GlcNAc). The C-terminal domain catalyzes the transfer of acetyl group from acetyl coenzyme A to glucosamine-1-phosphate (GlcN-1-P) to produce N-acetylglucosamine-1-phosphate (GlcNAc-1-P), which is converted into UDP-GlcNAc by the transfer of uridine 5- monophosphate (from uridine 5-triphosphate), a reaction catalyzed by the N-terminal domain (430 aa)
   
  0.922
rpiB
Ribose-5-phosphate isomerase B (153 aa)
       
  0.919
pgm
Phosphoglucomutase (548 aa)
   
  0.919
cpsG
Phosphomannomutase (474 aa)
   
 
  0.911
guaA
GMP synthase; Catalyzes the synthesis of GMP from XMP (513 aa)
 
   
  0.901
metG
methionyl-tRNA synthetase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation (649 aa)
   
 
  0.769
Your Current Organism:
Sulfurovum sp. NBC371
NCBI taxonomy Id: 387093
Other names: S. sp. NBC37-1, Sulfurovum, Sulfurovum Inagaki et al. 2004, Sulfurovum NBC37_1, Sulfurovum sp. NBC37-1, Sulfurovum sp. NBC371
Server load: low (8%) [HD]