STRINGSTRING
purC protein (Sulfurovum sp. NBC371) - STRING interaction network
"purC" - Phosphoribosylaminoimidazole-succinocarboxamide synthase in Sulfurovum sp. NBC371
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
purCPhosphoribosylaminoimidazole-succinocarboxamide synthase (244 aa)    
Predicted Functional Partners:
purE
Phosphoribosylaminoimidazole carboxylase catalytic subunit; Catalyzes the conversion of N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) to 4-carboxy-5-aminoimidazole ribonucleotide (CAIR) (164 aa)
 
  0.999
SUN_2371
Adenylosuccinate lyase (443 aa)
   
  0.997
purH
Bifunctional purine biosynthesis protein PurH (EC-2.1.2.3 3.5.4.10) (510 aa)
 
 
  0.995
purM
Phosphoribosylaminoimidazole synthetase (331 aa)
 
 
  0.993
purQ
Phosphoribosylformylglycinamidine synthase, large subunit; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP-dependent manner. PurS interacts with PurQ and PurL and is thought [...] (223 aa)
 
 
  0.989
purD
Phosphoribosylamine--glycine ligase (422 aa)
   
  0.988
purF
Amidophosphoribosyltransferase; Catalyzes the formation of phosphoribosylamine from phosphoribosylpyrophosphate (PRPP) and glutamine (456 aa)
 
 
  0.979
purN
Phosphoribosylglycinamide formyltransferase (184 aa)
   
  0.974
purS
Phosphoribosylformylglycinamidine synthase, small subunit; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP-dependent manner. PurS interacts with PurQ and PurL and is thought [...] (79 aa)
   
 
  0.950
guaA
GMP synthase; Catalyzes the synthesis of GMP from XMP (513 aa)
   
   
  0.945
Your Current Organism:
Sulfurovum sp. NBC371
NCBI taxonomy Id: 387093
Other names: S. sp. NBC37-1, Sulfurovum, Sulfurovum Inagaki et al. 2004, Sulfurovum NBC37_1, Sulfurovum sp. NBC37-1, Sulfurovum sp. NBC371
Server load: low (10%) [HD]