STRINGSTRING
SUN_1464 protein (Sulfurovum sp. NBC371) - STRING interaction network
"SUN_1464" - Hypothetical protein in Sulfurovum sp. NBC371
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
SUN_1464Hypothetical protein (347 aa)    
Predicted Functional Partners:
plsC
1-acyl-sn-glycerol-3-phosphate acyltransferase (236 aa)
 
        0.933
purQ
Phosphoribosylformylglycinamidine synthase, large subunit; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP-dependent manner. PurS interacts with PurQ and PurL and is thought [...] (223 aa)
              0.883
purS
Phosphoribosylformylglycinamidine synthase, small subunit; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP-dependent manner. PurS interacts with PurQ and PurL and is thought [...] (79 aa)
              0.883
purC
Phosphoribosylaminoimidazole-succinocarboxamide synthase (244 aa)
              0.883
SUN_1460
Carboxyl-terminal protease (455 aa)
              0.883
SUN_1127
Hypothetical protein (326 aa)
   
 
      0.785
SUN_0430
DNA polymerase III subunit delta (325 aa)
   
          0.778
SUN_0419
Hypothetical protein (192 aa)
 
          0.777
SUN_1321
Hypothetical protein (344 aa)
   
          0.776
SUN_2319
Hypothetical protein (359 aa)
   
          0.774
Your Current Organism:
Sulfurovum sp. NBC371
NCBI taxonomy Id: 387093
Other names: S. sp. NBC37-1, Sulfurovum, Sulfurovum Inagaki et al. 2004, Sulfurovum NBC37_1, Sulfurovum sp. NBC37-1, Sulfurovum sp. NBC371
Server load: low (7%) [HD]