STRINGSTRING
tatA protein (Sulfurovum sp. NBC371) - STRING interaction network
"tatA" - Twin arginine-targeting protein translocase in Sulfurovum sp. NBC371
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
tatATwin arginine-targeting protein translocase; Part of the twin-arginine translocation (Tat) system that transports large folded proteins containing a characteristic twin-arginine motif in their signal peptide across membranes. TatA could form the protein-conducting channel of the Tat system (75 aa)    
Predicted Functional Partners:
tatC
Twin-arginine translocation system component TatC; Part of the twin-arginine translocation (Tat) system that transports large folded proteins containing a characteristic twin-arginine motif in their signal peptide across membranes. Together with TatB, TatC is part of a receptor directly interacting with Tat signal peptides (347 aa)
 
 
  0.769
glmU
Bifunctional N-acetylglucosamine-1-phosphate uridyltransferase/glucosamine-1-phosphate acetyltransferase; Catalyzes the last two sequential reactions in the de novo biosynthetic pathway for UDP-N-acetylglucosamine (UDP- GlcNAc). The C-terminal domain catalyzes the transfer of acetyl group from acetyl coenzyme A to glucosamine-1-phosphate (GlcN-1-P) to produce N-acetylglucosamine-1-phosphate (GlcNAc-1-P), which is converted into UDP-GlcNAc by the transfer of uridine 5- monophosphate (from uridine 5-triphosphate), a reaction catalyzed by the N-terminal domain (430 aa)
       
    0.723
gmk
Guanylate kinase; Essential for recycling GMP and indirectly, cGMP (203 aa)
              0.724
argS
arginyl-tRNA synthetase (565 aa)
              0.721
SUN_2211
Hypothetical protein (299 aa)
              0.593
SUN_2207
Hypothetical protein (114 aa)
              0.544
tatB
Sec-independent translocase; Part of the twin-arginine translocation (Tat) system that transports large folded proteins containing a characteristic twin-arginine motif in their signal peptide across membranes. Together with TatC, TatB is part of a receptor directly interacting with Tat signal peptides. TatB may form an oligomeric binding site that transiently accommodates folded Tat precursor proteins before their translocation (162 aa)
     
 
  0.529
SUN_0447
Glycosyl hydrolase family protein (361 aa)
 
          0.469
SUN_2212
Hypothetical protein (149 aa)
              0.425
hisI
Histidine biosynthesis bifunctional protein HisI (222 aa)
   
        0.410
Your Current Organism:
Sulfurovum sp. NBC371
NCBI taxonomy Id: 387093
Other names: S. sp. NBC37-1, Sulfurovum, Sulfurovum Inagaki et al. 2004, Sulfurovum NBC37_1, Sulfurovum sp. NBC37-1, Sulfurovum sp. NBC371
Server load: low (33%) [HD]