STRINGSTRING
nuoI protein (Sulfurovum sp. NBC371) - STRING interaction network
"nuoI" - NADH dehydrogenase subunit I in Sulfurovum sp. NBC371
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
nuoINADH dehydrogenase subunit I; NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient (207 aa)    
Predicted Functional Partners:
nuoC
NADH dehydrogenase subunit C; NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain (261 aa)
 
  0.999
SUN_0846
NADH-quinone oxidoreductase subunit D (547 aa)
 
  0.999
nuoD
NADH dehydrogenase subunit D; NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient (409 aa)
 
  0.999
SUN_2224
NADH dehydrogenase subunit H; NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone (343 aa)
  0.999
nuoB
NADH dehydrogenase subunit B; NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient (172 aa)
 
  0.999
nuoK
NADH dehydrogenase subunit K; NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient (100 aa)
 
  0.999
SUN_2225
NADH-quinone oxidoreductase subunit G (820 aa)
 
  0.999
SUN_2226
NADH-quinone oxidoreductase subunit G (746 aa)
 
  0.999
SUN_2227
FAD-dependent pyridine nucleotide-disulfide oxidoreductase (669 aa)
 
  0.999
nuoL
NADH dehydrogenase subunit L (631 aa)
 
  0.999
Your Current Organism:
Sulfurovum sp. NBC371
NCBI taxonomy Id: 387093
Other names: S. sp. NBC37-1, Sulfurovum, Sulfurovum Inagaki et al. 2004, Sulfurovum NBC37_1, Sulfurovum sp. NBC37-1, Sulfurovum sp. NBC371
Server load: low (7%) [HD]