STRINGSTRING
ispDF protein (Granulibacter bethesdensis) - STRING interaction network
"ispDF" - Bifunctional enzyme IspD/IspF in Granulibacter bethesdensis
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ispDFBifunctional enzyme IspD/IspF; Bifunctional enzyme that catalyzes the formation of 4- diphosphocytidyl-2-C-methyl-D-erythritol from CTP and 2-C-methyl- D-erythritol 4-phosphate (MEP) (IspD), and catalyzes the conversion of 4-diphosphocytidyl-2-C-methyl-D-erythritol 2- phosphate (CDP-ME2P) to 2-C-methyl-D-erythritol 2,4- cyclodiphosphate (ME-CPP) with a corresponding release of cytidine 5-monophosphate (CMP) (IspF); In the N-terminal section; belongs to the IspD/TarI cytidylyltransferase family. IspD subfamily (376 aa)    
Predicted Functional Partners:
ispE
4-diphosphocytidyl-2-C-methyl-D-erythritol kinase; Catalyzes the phosphorylation of the position 2 hydroxy group of 4-diphosphocytidyl-2C-methyl-D-erythritol (302 aa)
 
 
  0.996
dxr
1-deoxy-D-xylulose 5-phosphate reductoisomerase; Catalyzes the NADP-dependent rearrangement and reduction of 1-deoxy-D-xylulose-5-phosphate (DXP) to 2-C-methyl-D-erythritol 4-phosphate (MEP); Belongs to the DXR family (405 aa)
 
  0.996
ispG
4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase (flavodoxin); Converts 2C-methyl-D-erythritol 2,4-cyclodiphosphate (ME-2,4cPP) into 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate; Belongs to the IspG family (387 aa)
 
 
  0.993
murC
UDP-N-acetylmuramate--L-alanine ligase; Cell wall formation; Belongs to the MurCDEF family (481 aa)
     
 
  0.986
ispH
4-hydroxy-3-methylbut-2-enyl diphosphate reductase; Catalyzes the conversion of 1-hydroxy-2-methyl-2-(E)- butenyl 4-diphosphate (HMBPP) into a mixture of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Acts in the terminal step of the DOXP/MEP pathway for isoprenoid precursor biosynthesis; Belongs to the IspH family (321 aa)
 
   
  0.948
ABI63302.1
1-deoxy-D-xylulose-5-phosphate synthase; Catalyzes the acyloin condensation reaction between C atoms 2 and 3 of pyruvate and glyceraldehyde 3-phosphate to yield 1-deoxy-D-xylulose-5-phosphate (DXP); Belongs to the transketolase family. DXPS subfamily (669 aa)
 
   
  0.884
ABI61119.1
1-deoxy-D-xylulose-5-phosphate synthase; Catalyzes the acyloin condensation reaction between C atoms 2 and 3 of pyruvate and glyceraldehyde 3-phosphate to yield 1-deoxy-D-xylulose-5-phosphate (DXP); Belongs to the transketolase family. DXPS subfamily (674 aa)
 
   
  0.884
metK
S-adenosylmethionine synthase; Catalyzes the formation of S-adenosylmethionine (AdoMet) from methionine and ATP. The overall synthetic reaction is composed of two sequential steps, AdoMet formation and the subsequent tripolyphosphate hydrolysis which occurs prior to release of AdoMet from the enzyme (395 aa)
       
  0.848
trmD
tRNA (guanine-N(1)-)-methyltransferase; Specifically methylates guanosine-37 in various tRNAs; Belongs to the RNA methyltransferase TrmD family (265 aa)
   
 
  0.838
ABI61834.1
Isoprenyl transferase; Catalyzes the condensation of isopentenyl diphosphate (IPP) with allylic pyrophosphates generating different type of terpenoids (244 aa)
   
   
  0.775
Your Current Organism:
Granulibacter bethesdensis
NCBI taxonomy Id: 391165
Other names: G. bethesdensis CGDNIH1, Granulibacter bethesdensis, Granulibacter bethesdensis CGDNIH1, Granulibacter bethesdensis str. CGDNIH1, Granulibacter bethesdensis strain CGDNIH1
Server load: low (14%) [HD]