STRINGSTRING
ABI62188.1 protein (Granulibacter bethesdensis) - STRING interaction network
"ABI62188.1" - annotation not available in Granulibacter bethesdensis
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ABI62188.1annotation not available (506 aa)    
Predicted Functional Partners:
nuoK
NADH-quinone oxidoreductase subunit K; NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4L family (106 aa)
 
 
  0.993
ABI62191.1
annotation not available (247 aa)
 
 
  0.991
nuoH
NADH-quinone oxidoreductase subunit H; NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone (342 aa)
 
 
  0.990
ABI62189.1
annotation not available (644 aa)
 
0.990
nuoN
NADH-quinone oxidoreductase subunit N; NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family (478 aa)
 
 
0.978
nuoI
NADH-quinone oxidoreductase subunit I; NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient (162 aa)
 
 
  0.976
nuoA
NADH-quinone oxidoreductase subunit A; NDH-1 shuttles electrons from NADH, via FMN and iron- sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family (121 aa)
 
 
  0.974
ABI62172.1
annotation not available (207 aa)
     
 
  0.960
ABI62174.1
annotation not available (312 aa)
     
 
  0.960
ABI62173.1
annotation not available (663 aa)
     
 
  0.959
Your Current Organism:
Granulibacter bethesdensis
NCBI taxonomy Id: 391165
Other names: G. bethesdensis CGDNIH1, Granulibacter bethesdensis, Granulibacter bethesdensis CGDNIH1, Granulibacter bethesdensis str. CGDNIH1, Granulibacter bethesdensis strain CGDNIH1
Server load: low (20%) [HD]