STRINGSTRING
mfd protein (Kordia algicida) - STRING interaction network
"mfd" - Transcription-repair-coupling factor in Kordia algicida
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
mfdTranscription-repair-coupling factor ; Couples transcription and DNA repair by recognizing RNA polymerase (RNAP) stalled at DNA lesions. Mediates ATP-dependent release of RNAP and its truncated transcript from the DNA, and recruitment of nucleotide excision repair machinery to the damaged site (1095 aa)    
Predicted Functional Partners:
KAOT1_09726
UvrABC system protein A ; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrA is an ATPase and a DNA-binding protein. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. When the presence of a lesion has been verified by UvrB, the UvrA molecules dissociate (942 aa)
   
 
  0.908
KAOT1_07863
UvrABC system protein A ; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrA is an ATPase and a DNA-binding protein. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. When the presence of a lesion has been verified by UvrB, the UvrA molecules dissociate (926 aa)
   
 
  0.908
KAOT1_19572
DNA polymerase I (943 aa)
   
   
  0.795
rpoB
Transcriptase subunit beta ; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates (1269 aa)
     
 
  0.792
priA
ATP-dependent helicase PriA ; Involved in the restart of stalled replication forks. Recognizes and binds the arrested nascent DNA chain at stalled replication forks. It can open the DNA duplex, via its helicase activity, and promote assembly of the primosome and loading of the major replicative helicase DnaB onto DNA (817 aa)
   
   
  0.756
recR
Recombination protein RecR ; May play a role in DNA repair. It seems to be involved in an RecBC-independent recombinational process of DNA repair. It may act with RecF and RecO (206 aa)
   
 
  0.733
KAOT1_15097
Possible thiol-disulfide isomerase (441 aa)
              0.712
recF
DNA replication and repair protein RecF ; The RecF protein is involved in DNA metabolism; it is required for DNA replication and normal SOS inducibility. RecF binds preferentially to single-stranded, linear DNA. It also seems to bind ATP (376 aa)
 
   
  0.680
KAOT1_06822
DNA helicase (778 aa)
   
 
  0.660
KAOT1_21627
RNA polymerase sigma-70 factor ; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released (287 aa)
   
 
  0.627
Your Current Organism:
Kordia algicida
NCBI taxonomy Id: 391587
Other names: K. algicida, K. algicida OT-1, Kordia, Kordia Sohn et al. 2004, Kordia algicida, Kordia algicida OT-1, Kordia algicida Sohn et al. 2004, Kordia algicida str. OT-1, Kordia algicida strain OT-1
Server load: low (18%) [HD]