STRINGSTRING
lon protein (Pedobacter sp. BAL39) - STRING interaction network
"lon" - ATP-dependent protease La in Pedobacter sp. BAL39
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
lonATP-dependent protease La ; ATP-dependent serine protease that mediates the selective degradation of mutant and abnormal proteins as well as certain short-lived regulatory proteins. Required for cellular homeostasis and for survival from DNA damage and developmental changes induced by stress. Degrades polypeptides processively to yield small peptide fragments that are 5 to 10 amino acids long. Binds to DNA in a double-stranded, site-specific manner (825 aa)    
Predicted Functional Partners:
clpX
ATP-dependent Clp protease ATP-binding subunit ClpX ; ATP-dependent specificity component of the Clp protease. It directs the protease to specific substrates. Can perform chaperone functions in the absence of ClpP (392 aa)
   
 
  0.867
clpP
Endopeptidase Clp ; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins (233 aa)
   
 
  0.760
PBAL39_11010
2-phosphoglycerate dehydratase ; Catalyzes the reversible conversion of 2- phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis (426 aa)
 
 
  0.712
dnaK
Heat shock protein 70 ; Acts as a chaperone (619 aa)
 
 
  0.696
PBAL39_06116
Uncharacterized protein (319 aa)
              0.687
PBAL39_12543
Valyl-tRNA synthetase ; Catalyzes the attachment of valine to tRNA(Val). As ValRS can inadvertently accommodate and process structurally similar amino acids such as threonine, to avoid such errors, it has a "posttransfer" editing activity that hydrolyzes mischarged Thr-tRNA(Val) in a tRNA-dependent manner (889 aa)
 
   
  0.674
PBAL39_08035
2-phosphoglycerate dehydratase ; Catalyzes the reversible conversion of 2- phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis (431 aa)
   
 
  0.672
dnaJ
Chaperone protein DnaJ ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] (388 aa)
   
   
  0.639
ftsH
ATP-dependent zinc metalloprotease FtsH ; Acts as a processive, ATP-dependent zinc metallopeptidase for both cytoplasmic and membrane proteins. Plays a role in the quality control of integral membrane proteins (697 aa)
     
 
  0.620
PBAL39_11337
Heat shock protein 90 (629 aa)
 
   
  0.619
Your Current Organism:
Pedobacter sp. BAL39
NCBI taxonomy Id: 391596
Other names: P. sp. BAL39, Pedobacter BAL39, Pedobacter sp. BAL39
Server load: low (2%) [HD]