STRINGSTRING
ftsH protein (Pedobacter sp. BAL39) - STRING interaction network
"ftsH" - ATP-dependent zinc metalloprotease FtsH in Pedobacter sp. BAL39
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ftsHATP-dependent zinc metalloprotease FtsH ; Acts as a processive, ATP-dependent zinc metallopeptidase for both cytoplasmic and membrane proteins. Plays a role in the quality control of integral membrane proteins (697 aa)    
Predicted Functional Partners:
rsfS
Ribosomal silencing factor RsfS ; Functions as a ribosomal silencing factor. Interacts with ribosomal protein L14 (rplN), blocking formation of intersubunit bridge B8. Prevents association of the 30S and 50S ribosomal subunits and the formation of functional ribosomes, thus repressing translation (124 aa)
              0.808
PBAL39_11185
MgtC/SapB transporter (156 aa)
       
      0.808
PBAL39_09901
MgtC family protein (218 aa)
       
      0.808
tpiA
Triose-phosphate isomerase ; Involved in the gluconeogenesis. Catalyzes stereospecifically the conversion of dihydroxyacetone phosphate (DHAP) to D-glyceraldehyde-3-phosphate (G3P) (260 aa)
 
   
  0.797
gltX
Glutamyl-tRNA synthetase ; Catalyzes the attachment of glutamate to tRNA(Glu) in a two-step reaction- glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu) (502 aa)
 
 
  0.790
lepA
Ribosomal back-translocase LepA ; Required for accurate and efficient protein synthesis under certain stress conditions. May act as a fidelity factor of the translation reaction, by catalyzing a one-codon backward translocation of tRNAs on improperly translocated ribosomes. Back- translocation proceeds from a post-translocation (POST) complex to a pre-translocation (PRE) complex, thus giving elongation factor G a second chance to translocate the tRNAs correctly. Binds to ribosomes in a GTP-dependent manner (595 aa)
 
   
  0.772
pgk
Phosphoglycerate kinase (397 aa)
 
   
  0.752
PBAL39_11467
Uncharacterized protein (214 aa)
              0.742
tsaD
tRNA threonylcarbamoyladenosine biosynthesis protein TsaD ; Required for the formation of a threonylcarbamoyl group on adenosine at position 37 (t(6)A37) in tRNAs that read codons beginning with adenine. Is involved in the transfer of the threonylcarbamoyl moiety of threonylcarbamoyl-AMP (TC-AMP) to the N6 group of A37, together with TsaE and TsaB. TsaD likely plays a direct catalytic role in this reaction (333 aa)
   
   
  0.712
PBAL39_18189
Alanyl-tRNA synthetase ; Catalyzes the attachment of alanine to tRNA(Ala) in a two-step reaction- alanine is first activated by ATP to form Ala- AMP and then transferred to the acceptor end of tRNA(Ala). Also edits incorrectly charged Ser-tRNA(Ala) and Gly-tRNA(Ala) via its editing domain (900 aa)
 
   
  0.707
Your Current Organism:
Pedobacter sp. BAL39
NCBI taxonomy Id: 391596
Other names: P. sp. BAL39, Pedobacter BAL39, Pedobacter sp. BAL39
Server load: low (10%) [HD]