node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
glmS | glmU | YE4203 | YE4204 | Glutamine---fructose-6-phosphate transaminase (isomerizing); Catalyzes the first step in hexosamine metabolism, converting fructose-6P into glucosamine-6P using glutamine as a nitrogen source | Bifunctional n-acetylglucosamine-1-phosphate uridyltransferase/glucosamine-1-phosphate acetyltransferase; Catalyzes the last two sequential reactions in the de novo biosynthetic pathway for UDP-N-acetylglucosamine (UDP-GlcNAc). The C- terminal domain catalyzes the transfer of acetyl group from acetyl coenzyme A to glucosamine-1-phosphate (GlcN-1-P) to produce N- acetylglucosamine-1-phosphate (GlcNAc-1-P), which is converted into UDP-GlcNAc by the transfer of uridine 5-monophosphate (from uridine 5- triphosphate), a reaction catalyzed by the N-terminal domain | 0.982 |
glmS | mrsA | YE4203 | YE0430 | Glutamine---fructose-6-phosphate transaminase (isomerizing); Catalyzes the first step in hexosamine metabolism, converting fructose-6P into glucosamine-6P using glutamine as a nitrogen source | Probable phosphoglucomutase/phosphomannomutase; Catalyzes the conversion of glucosamine-6-phosphate to glucosamine-1-phosphate | 0.991 |
glmS | rapZ | YE4203 | YE3762 | Glutamine---fructose-6-phosphate transaminase (isomerizing); Catalyzes the first step in hexosamine metabolism, converting fructose-6P into glucosamine-6P using glutamine as a nitrogen source | Conserved hypothetical protein; Modulates the synthesis of GlmS, by affecting the processing and stability of the regulatory small RNA GlmZ. When glucosamine-6- phosphate (GlcN6P) concentrations are high in the cell, RapZ binds GlmZ and targets it to cleavage by RNase E. Consequently, GlmZ is inactivated and unable to activate GlmS synthesis. Under low GlcN6P concentrations, RapZ is sequestered and inactivated by an other regulatory small RNA, GlmY, preventing GlmZ degradation and leading to synthesis of GlmS | 0.758 |
glmU | glmS | YE4204 | YE4203 | Bifunctional n-acetylglucosamine-1-phosphate uridyltransferase/glucosamine-1-phosphate acetyltransferase; Catalyzes the last two sequential reactions in the de novo biosynthetic pathway for UDP-N-acetylglucosamine (UDP-GlcNAc). The C- terminal domain catalyzes the transfer of acetyl group from acetyl coenzyme A to glucosamine-1-phosphate (GlcN-1-P) to produce N- acetylglucosamine-1-phosphate (GlcNAc-1-P), which is converted into UDP-GlcNAc by the transfer of uridine 5-monophosphate (from uridine 5- triphosphate), a reaction catalyzed by the N-terminal domain | Glutamine---fructose-6-phosphate transaminase (isomerizing); Catalyzes the first step in hexosamine metabolism, converting fructose-6P into glucosamine-6P using glutamine as a nitrogen source | 0.982 |
glmU | mrsA | YE4204 | YE0430 | Bifunctional n-acetylglucosamine-1-phosphate uridyltransferase/glucosamine-1-phosphate acetyltransferase; Catalyzes the last two sequential reactions in the de novo biosynthetic pathway for UDP-N-acetylglucosamine (UDP-GlcNAc). The C- terminal domain catalyzes the transfer of acetyl group from acetyl coenzyme A to glucosamine-1-phosphate (GlcN-1-P) to produce N- acetylglucosamine-1-phosphate (GlcNAc-1-P), which is converted into UDP-GlcNAc by the transfer of uridine 5-monophosphate (from uridine 5- triphosphate), a reaction catalyzed by the N-terminal domain | Probable phosphoglucomutase/phosphomannomutase; Catalyzes the conversion of glucosamine-6-phosphate to glucosamine-1-phosphate | 0.996 |
glmU | ptsN | YE4204 | YE3761 | Bifunctional n-acetylglucosamine-1-phosphate uridyltransferase/glucosamine-1-phosphate acetyltransferase; Catalyzes the last two sequential reactions in the de novo biosynthetic pathway for UDP-N-acetylglucosamine (UDP-GlcNAc). The C- terminal domain catalyzes the transfer of acetyl group from acetyl coenzyme A to glucosamine-1-phosphate (GlcN-1-P) to produce N- acetylglucosamine-1-phosphate (GlcNAc-1-P), which is converted into UDP-GlcNAc by the transfer of uridine 5-monophosphate (from uridine 5- triphosphate), a reaction catalyzed by the N-terminal domain | annotation not available | 0.513 |
glmU | rapZ | YE4204 | YE3762 | Bifunctional n-acetylglucosamine-1-phosphate uridyltransferase/glucosamine-1-phosphate acetyltransferase; Catalyzes the last two sequential reactions in the de novo biosynthetic pathway for UDP-N-acetylglucosamine (UDP-GlcNAc). The C- terminal domain catalyzes the transfer of acetyl group from acetyl coenzyme A to glucosamine-1-phosphate (GlcN-1-P) to produce N- acetylglucosamine-1-phosphate (GlcNAc-1-P), which is converted into UDP-GlcNAc by the transfer of uridine 5-monophosphate (from uridine 5- triphosphate), a reaction catalyzed by the N-terminal domain | Conserved hypothetical protein; Modulates the synthesis of GlmS, by affecting the processing and stability of the regulatory small RNA GlmZ. When glucosamine-6- phosphate (GlcN6P) concentrations are high in the cell, RapZ binds GlmZ and targets it to cleavage by RNase E. Consequently, GlmZ is inactivated and unable to activate GlmS synthesis. Under low GlcN6P concentrations, RapZ is sequestered and inactivated by an other regulatory small RNA, GlmY, preventing GlmZ degradation and leading to synthesis of GlmS | 0.603 |
lptA | ptsN | YE3757 | YE3761 | Lipopolysaccharide export system protein lpta; Involved in the assembly of lipopolysaccharide (LPS). Required for the translocation of LPS from the inner membrane to the outer membrane. May form a bridge between the inner membrane and the outer membrane, via interactions with LptC and LptD, thereby facilitating LPS transfer across the periplasm | annotation not available | 0.786 |
lptA | ptsO | YE3757 | YE3763 | Lipopolysaccharide export system protein lpta; Involved in the assembly of lipopolysaccharide (LPS). Required for the translocation of LPS from the inner membrane to the outer membrane. May form a bridge between the inner membrane and the outer membrane, via interactions with LptC and LptD, thereby facilitating LPS transfer across the periplasm | annotation not available | 0.456 |
lptA | rapZ | YE3757 | YE3762 | Lipopolysaccharide export system protein lpta; Involved in the assembly of lipopolysaccharide (LPS). Required for the translocation of LPS from the inner membrane to the outer membrane. May form a bridge between the inner membrane and the outer membrane, via interactions with LptC and LptD, thereby facilitating LPS transfer across the periplasm | Conserved hypothetical protein; Modulates the synthesis of GlmS, by affecting the processing and stability of the regulatory small RNA GlmZ. When glucosamine-6- phosphate (GlcN6P) concentrations are high in the cell, RapZ binds GlmZ and targets it to cleavage by RNase E. Consequently, GlmZ is inactivated and unable to activate GlmS synthesis. Under low GlcN6P concentrations, RapZ is sequestered and inactivated by an other regulatory small RNA, GlmY, preventing GlmZ degradation and leading to synthesis of GlmS | 0.794 |
lptA | rpoN | YE3757 | YE3759 | Lipopolysaccharide export system protein lpta; Involved in the assembly of lipopolysaccharide (LPS). Required for the translocation of LPS from the inner membrane to the outer membrane. May form a bridge between the inner membrane and the outer membrane, via interactions with LptC and LptD, thereby facilitating LPS transfer across the periplasm | Rna polymerase factor sigma-54; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released | 0.842 |
lptA | yhbG | YE3757 | YE3758 | Lipopolysaccharide export system protein lpta; Involved in the assembly of lipopolysaccharide (LPS). Required for the translocation of LPS from the inner membrane to the outer membrane. May form a bridge between the inner membrane and the outer membrane, via interactions with LptC and LptD, thereby facilitating LPS transfer across the periplasm | annotation not available | 0.983 |
lptA | yhbH | YE3757 | YE3760 | Lipopolysaccharide export system protein lpta; Involved in the assembly of lipopolysaccharide (LPS). Required for the translocation of LPS from the inner membrane to the outer membrane. May form a bridge between the inner membrane and the outer membrane, via interactions with LptC and LptD, thereby facilitating LPS transfer across the periplasm | annotation not available | 0.863 |
lptA | yrbK | YE3757 | YE3756 | Lipopolysaccharide export system protein lpta; Involved in the assembly of lipopolysaccharide (LPS). Required for the translocation of LPS from the inner membrane to the outer membrane. May form a bridge between the inner membrane and the outer membrane, via interactions with LptC and LptD, thereby facilitating LPS transfer across the periplasm | Lipopolysaccharide export system protein lptc; Involved in the assembly of lipopolysaccharide (LPS). Required for the translocation of LPS from the inner membrane to the outer membrane. Facilitates the transfer of LPS from the inner membrane to the periplasmic protein LptA. Could be a docking site for LptA | 0.994 |
mrsA | glmS | YE0430 | YE4203 | Probable phosphoglucomutase/phosphomannomutase; Catalyzes the conversion of glucosamine-6-phosphate to glucosamine-1-phosphate | Glutamine---fructose-6-phosphate transaminase (isomerizing); Catalyzes the first step in hexosamine metabolism, converting fructose-6P into glucosamine-6P using glutamine as a nitrogen source | 0.991 |
mrsA | glmU | YE0430 | YE4204 | Probable phosphoglucomutase/phosphomannomutase; Catalyzes the conversion of glucosamine-6-phosphate to glucosamine-1-phosphate | Bifunctional n-acetylglucosamine-1-phosphate uridyltransferase/glucosamine-1-phosphate acetyltransferase; Catalyzes the last two sequential reactions in the de novo biosynthetic pathway for UDP-N-acetylglucosamine (UDP-GlcNAc). The C- terminal domain catalyzes the transfer of acetyl group from acetyl coenzyme A to glucosamine-1-phosphate (GlcN-1-P) to produce N- acetylglucosamine-1-phosphate (GlcNAc-1-P), which is converted into UDP-GlcNAc by the transfer of uridine 5-monophosphate (from uridine 5- triphosphate), a reaction catalyzed by the N-terminal domain | 0.996 |
mrsA | rapZ | YE0430 | YE3762 | Probable phosphoglucomutase/phosphomannomutase; Catalyzes the conversion of glucosamine-6-phosphate to glucosamine-1-phosphate | Conserved hypothetical protein; Modulates the synthesis of GlmS, by affecting the processing and stability of the regulatory small RNA GlmZ. When glucosamine-6- phosphate (GlcN6P) concentrations are high in the cell, RapZ binds GlmZ and targets it to cleavage by RNase E. Consequently, GlmZ is inactivated and unable to activate GlmS synthesis. Under low GlcN6P concentrations, RapZ is sequestered and inactivated by an other regulatory small RNA, GlmY, preventing GlmZ degradation and leading to synthesis of GlmS | 0.563 |
ptsN | glmU | YE3761 | YE4204 | annotation not available | Bifunctional n-acetylglucosamine-1-phosphate uridyltransferase/glucosamine-1-phosphate acetyltransferase; Catalyzes the last two sequential reactions in the de novo biosynthetic pathway for UDP-N-acetylglucosamine (UDP-GlcNAc). The C- terminal domain catalyzes the transfer of acetyl group from acetyl coenzyme A to glucosamine-1-phosphate (GlcN-1-P) to produce N- acetylglucosamine-1-phosphate (GlcNAc-1-P), which is converted into UDP-GlcNAc by the transfer of uridine 5-monophosphate (from uridine 5- triphosphate), a reaction catalyzed by the N-terminal domain | 0.513 |
ptsN | lptA | YE3761 | YE3757 | annotation not available | Lipopolysaccharide export system protein lpta; Involved in the assembly of lipopolysaccharide (LPS). Required for the translocation of LPS from the inner membrane to the outer membrane. May form a bridge between the inner membrane and the outer membrane, via interactions with LptC and LptD, thereby facilitating LPS transfer across the periplasm | 0.786 |
ptsN | ptsO | YE3761 | YE3763 | annotation not available | annotation not available | 0.982 |