STRINGSTRING
NGR_c14750 protein (Sinorhizobium fredii NGR234) - STRING interaction network
"NGR_c14750" - annotation not available in Sinorhizobium fredii NGR234
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
NGR_c14750annotation not available (112 aa)    
Predicted Functional Partners:
NGR_c31490
Ammonium transporter; Amt family (475 aa)
 
  0.991
glnD
Bifunctional uridylyltransferase/uridylyl-removing enzyme; Modifies, by uridylylation and deuridylylation, the PII regulatory proteins (GlnB and homologs), in response to the nitrogen status of the cell that GlnD senses through the glutamine level. Under low glutamine levels, catalyzes the conversion of the PII proteins and UTP to PII-UMP and PPi, while under higher glutamine levels, GlnD hydrolyzes PII-UMP to PII and UMP (deuridylylation). Thus, controls uridylylation state and activity of the PII proteins, and plays an important role in the regulation of nitrogen fixation and metabolism (965 aa)
 
  0.975
ntrB
annotation not available (384 aa)
   
  0.930
glnA3
Glutamine synthetase I; glutamate--ammonia ligase I; GSI (469 aa)
 
 
  0.897
gltB1
annotation not available (1574 aa)
 
   
  0.749
glnE
Bifunctional glutamine synthetase adenylyltransferase/adenylyl-removing enzyme; Involved in the regulation of glutamine synthetase GlnA, a key enzyme in the process to assimilate ammonia. When cellular nitrogen levels are high, the C-terminal adenylyl transferase (AT) inactivates GlnA by covalent transfer of an adenylyl group from ATP to specific tyrosine residue of GlnA, thus reducing its activity. Conversely, when nitrogen levels are low, the N-terminal adenylyl removase (AR) activates GlnA by removing the adenylyl group by phosphorolysis, increasing its activity. The regulatory regi [...] (985 aa)
 
 
  0.743
argB
Acetylglutamate kinase; Catalyzes the ATP-dependent phosphorylation of N-acetyl- L-glutamate; Belongs to the acetylglutamate kinase family. ArgB subfamily (295 aa)
   
 
  0.717
NGR_c12760
Triosephosphate isomerase; Involved in the gluconeogenesis. Catalyzes stereospecifically the conversion of dihydroxyacetone phosphate (DHAP) to D-glyceraldehyde-3-phosphate (G3P); Belongs to the triosephosphate isomerase family (256 aa)
         
  0.689
nadE2
Glutamine-dependent NAD(+) synthetase; Catalyzes the ATP-dependent amidation of deamido-NAD to form NAD. Uses L-glutamine as a nitrogen source (560 aa)
     
 
  0.676
tpiA
Triosephosphate isomerase; TIM 2 (261 aa)
         
  0.670
Your Current Organism:
Sinorhizobium fredii NGR234
NCBI taxonomy Id: 394
Other names: Ensifer fredii NGR234, Plasmid pNGR234a, Rhizobium sp. (strain NGR234), Rhizobium sp. NGR234, S. fredii NGR234, Sinorhizobium fredii NGR234, Sinorhizobium sp. NGR234
Server load: low (11%) [HD]