STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
argSKEGG: ecj:JW1865 arginyl-tRNA synthetase; TIGRFAM: arginyl-tRNA synthetase. (577 aa)    
Predicted Functional Partners:
guaA
GMP synthase (glutamine-hydrolyzing); Catalyzes the synthesis of GMP from XMP.
  
  
 0.987
metG
methionyl-tRNA synthetase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation.
 
 0.939
proS
prolyl-tRNA synthetase; Catalyzes the attachment of proline to tRNA(Pro) in a two- step reaction: proline is first activated by ATP to form Pro-AMP and then transferred to the acceptor end of tRNA(Pro). As ProRS can inadvertently accommodate and process non-cognate amino acids such as alanine and cysteine, to avoid such errors it has two additional distinct editing activities against alanine. One activity is designated as 'pretransfer' editing and involves the tRNA(Pro)-independent hydrolysis of activated Ala-AMP. The other activity is designated 'posttransfer' editing and involves dea [...]
  
 0.936
ileS
Isoleucyl-tRNA synthetase; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as 'pretransfer' editing and involves the hydrolysis of activated Val-AMP. The other activity is designated 'posttransfer' editing and involves deacylation of mischarged Val-tRNA(Ile). Belongs to the class-I aminoacyl-tRNA synthetase family. IleS type 1 subfamily.
  
 0.927
leuS
TIGRFAM: leucyl-tRNA synthetase; KEGG: sec:SC0678 leucine tRNA synthetase; Belongs to the class-I aminoacyl-tRNA synthetase family.
  
 0.891
gltX
glutamyl-tRNA synthetase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two- step reaction: glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu).
  
 0.865
asnS
TIGRFAM: asparaginyl-tRNA synthetase; PFAM: tRNA synthetase, class II (D, K and N); nucleic acid binding, OB-fold, tRNA/helicase-type; KEGG: sdy:SDY_2327 asparagine tRNA synthetase.
  
 0.857
pheT
KEGG: ecp:ECP_1661 phenylalanyl-tRNA synthetase beta chain; TIGRFAM: phenylalanyl-tRNA synthetase, beta subunit.
  
  
 0.851
glnS
KEGG: stm:STM0686 glutamine tRNA synthetase; TIGRFAM: glutaminyl-tRNA synthetase; PFAM: glutamyl-tRNA synthetase, class Ic.
  
 0.841
gluQ
Glutamate--tRNA ligase; Catalyzes the tRNA-independent activation of glutamate in presence of ATP and the subsequent transfer of glutamate onto a tRNA(Asp). Glutamate is transferred on the 2-amino-5-(4,5-dihydroxy-2- cyclopenten-1-yl) moiety of the queuosine in the wobble position of the QUC anticodon; Belongs to the class-I aminoacyl-tRNA synthetase family. GluQ subfamily.
  
 0.818
Your Current Organism:
Enterobacter sp. 638
NCBI taxonomy Id: 399742
Other names: E. sp. 638
Server load: low (34%) [HD]