STRINGSTRING
recG protein (Pseudoflavonifractor capillosus) - STRING interaction network
"recG" - ATP-dependent DNA helicase RecG in Pseudoflavonifractor capillosus
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
recGATP-dependent DNA helicase RecG ; Critical role in recombination and DNA repair. Helps process Holliday junction intermediates to mature products by catalyzing branch migration. Has a DNA unwinding activity characteristic of a DNA helicase with a 3’- to 5’- polarity. Unwinds branched duplex DNA (Y-DNA) (694 aa)    
Predicted Functional Partners:
ruvA
Holliday junction ATP-dependent DNA helicase RuvA ; The RuvA-RuvB complex in the presence of ATP renatures cruciform structure in supercoiled DNA with palindromic sequence, indicating that it may promote strand exchange reactions in homologous recombination. RuvAB is a helicase that mediates the Holliday junction migration by localized denaturation and reannealing. RuvA stimulates, in the presence of DNA, the weak ATPase activity of RuvB (201 aa)
 
  0.908
ruvB
Holliday junction ATP-dependent DNA helicase RuvB ; The RuvA-RuvB complex in the presence of ATP renatures cruciform structure in supercoiled DNA with palindromic sequence, indicating that it may promote strand exchange reactions in homologous recombination. RuvAB is a helicase that mediates the Holliday junction migration by localized denaturation and reannealing (351 aa)
 
 
  0.908
BACCAP_03516
DNA helicase (830 aa)
 
  0.895
recR
Recombination protein RecR ; May play a role in DNA repair. It seems to be involved in an RecBC-independent recombinational process of DNA repair. It may act with RecF and RecO (200 aa)
   
   
  0.890
BACCAP_01905
DNA helicase (717 aa)
 
  0.843
BACCAP_00539
Oxidoreductase (143 aa)
              0.826
BACCAP_00540
Acetyltransferase, GNAT family (155 aa)
              0.824
recA
Recombinase A ; Can catalyze the hydrolysis of ATP in the presence of single-stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage (374 aa)
 
 
  0.798
BACCAP_02945
ATP-dependent DNA helicase, RecQ family (420 aa)
   
  0.768
coaD
Pantetheine-phosphate adenylyltransferase ; Reversibly transfers an adenylyl group from ATP to 4’- phosphopantetheine, yielding dephospho-CoA (dPCoA) and pyrophosphate (165 aa)
 
   
  0.764
Your Current Organism:
Pseudoflavonifractor capillosus
NCBI taxonomy Id: 411467
Other names: Bacillus capillosus, Bacteroides capillosus, Bacteroides capillosus ATCC 29799, P. capillosus, P. capillosus ATCC 29799, Pseudobacterium capillosum, Pseudoflavonifractor, Pseudoflavonifractor Carlier et al. 2010, Pseudoflavonifractor capillosus, Pseudoflavonifractor capillosus ATCC 29799, Pseudoflavonifractor capillosus str. ATCC 29799, Pseudoflavonifractor capillosus strain ATCC 29799, Ristella capillosa
Server load: low (6%) [HD]