STRINGSTRING
rplU protein (Pseudoflavonifractor capillosus) - STRING interaction network
"rplU" - 50S ribosomal protein L21 in Pseudoflavonifractor capillosus
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
rplU50S ribosomal protein L21 ; This protein binds to 23S rRNA in the presence of protein L20 (103 aa)    
Predicted Functional Partners:
rpmA
50S ribosomal protein L27 (94 aa)
 
  0.999
rplM
50S ribosomal protein L13 ; This protein is one of the early assembly proteins of the 50S ribosomal subunit, although it is not seen to bind rRNA by itself. It is important during the early stages of 50S assembly (148 aa)
   
  0.999
rplV
50S ribosomal protein L22 ; The globular domain of the protein is located near the polypeptide exit tunnel on the outside of the subunit, while an extended beta-hairpin is found that lines the wall of the exit tunnel in the center of the 70S ribosome (114 aa)
   
  0.998
rplJ
50S ribosomal protein L10 ; Forms part of the ribosomal stalk, playing a central role in the interaction of the ribosome with GTP-bound translation factors (144 aa)
     
  0.998
rplT
50S ribosomal protein L20 ; Binds directly to 23S ribosomal RNA and is necessary for the in vitro assembly process of the 50S ribosomal subunit. It is not involved in the protein synthesizing functions of that subunit (118 aa)
 
  0.998
rplB
50S ribosomal protein L2 ; One of the primary rRNA binding proteins. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is somewhat controversial. Makes several contacts with the 16S rRNA in the 70S ribosome (263 aa)
   
  0.998
rplD
50S ribosomal protein L4 ; Forms part of the polypeptide exit tunnel (206 aa)
 
  0.997
rplW
50S ribosomal protein L23 ; One of the early assembly proteins it binds 23S rRNA. One of the proteins that surrounds the polypeptide exit tunnel on the outside of the ribosome. Forms the main docking site for trigger factor binding to the ribosome (99 aa)
   
  0.997
rplC
50S ribosomal protein L3 ; One of the primary rRNA binding proteins, it binds directly near the 3’-end of the 23S rRNA, where it nucleates assembly of the 50S subunit (240 aa)
   
  0.997
rplF
50S ribosomal protein L6 ; This protein binds to the 23S rRNA, and is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center (176 aa)
   
  0.997
Your Current Organism:
Pseudoflavonifractor capillosus
NCBI taxonomy Id: 411467
Other names: Bacillus capillosus, Bacteroides capillosus, Bacteroides capillosus ATCC 29799, P. capillosus, P. capillosus ATCC 29799, Pseudobacterium capillosum, Pseudoflavonifractor, Pseudoflavonifractor Carlier et al. 2010, Pseudoflavonifractor capillosus, Pseudoflavonifractor capillosus ATCC 29799, Pseudoflavonifractor capillosus str. ATCC 29799, Pseudoflavonifractor capillosus strain ATCC 29799, Ristella capillosa
Server load: low (7%) [HD]