STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
Mpe_A3255Phosphoenolpyruvate carboxylase; Forms oxaloacetate, a four-carbon dicarboxylic acid source for the tricarboxylic acid cycle. (920 aa)    
Predicted Functional Partners:
sucD-2
succinyl-CoA synthetase (ADP-forming) alpha subunit; Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The alpha subunit of the enzyme binds the substrates coenzyme A and phosphate, while succinate binding and nucleotide specificity is provided by the beta subunit.
    
 0.958
sucC-2
succinyl-CoA synthetase (ADP-forming) beta subunit; Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The beta subunit provides nucleotide specificity of the enzyme and binds the substrate succinate, while the binding sites for coenzyme A and phosphate are found in the alpha subunit.
    
 0.933
ppc
Phosphoenolpyruvate carboxylase; Forms oxaloacetate, a four-carbon dicarboxylic acid source for the tricarboxylic acid cycle; Belongs to the PEPCase type 1 family.
  
  
 
0.921
eno
Enolase; Catalyzes the reversible conversion of 2-phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis; Belongs to the enolase family.
   
 
 0.920
pykF
Pyruvate kinase; Belongs to the pyruvate kinase family.
     
 0.917
Mpe_A1521
Phosphoenolpyruvate synthase; Catalyzes the phosphorylation of pyruvate to phosphoenolpyruvate; Belongs to the PEP-utilizing enzyme family.
     
 0.917
mdh
Malate dehydrogenase (NAD); Catalyzes the reversible oxidation of malate to oxaloacetate. Belongs to the LDH/MDH superfamily. MDH type 2 family.
   
 
 0.917
pckG
Phosphoenolpyruvate carboxykinase (GTP); Catalyzes the conversion of oxaloacetate (OAA) to phosphoenolpyruvate (PEP), the rate-limiting step in the metabolic pathway that produces glucose from lactate and other precursors derived from the citric acid cycle; Belongs to the phosphoenolpyruvate carboxykinase [GTP] family.
     
 0.917
pgk
Phosphoglycerate kinase; Belongs to the phosphoglycerate kinase family.
  
 
 0.836
cbbK
Phosphoglycerate kinase; Belongs to the phosphoglycerate kinase family.
  
 
 0.836
Your Current Organism:
Methylibium petroleiphilum
NCBI taxonomy Id: 420662
Other names: M. petroleiphilum PM1, MTBE-degrading bacterium PM1, Methylibium petroleiphilum PM1, Methylibium petroleiphilum str. PM1, Methylibium petroleiphilum strain PM1, Rubrivivax gelatinosus PM1
Server load: medium (44%) [HD]