STRINGSTRING
aroB’ protein (Methanococcus voltae) - STRING interaction network
"aroB'" - 3-dehydroquinate synthase in Methanococcus voltae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
aroB'3-dehydroquinate synthase; Catalyzes the oxidative deamination and cyclization of 2-amino-3,7-dideoxy-D-threo-hept-6-ulosonic acid (ADH) to yield 3- dehydroquinate (DHQ), which is fed into the canonical shikimic pathway of aromatic amino acid biosynthesis (374 aa)    
Predicted Functional Partners:
aroA'
Putative phospho-2-dehydro-3-deoxyheptonate aldolase; Catalyzes a transaldol reaction between 6-deoxy-5- ketofructose 1-phosphate (DKFP) and L-aspartate semialdehyde (ASA) with an elimination of hydroxypyruvaldehyde phosphate to yield 2- amino-3,7-dideoxy-D-threo-hept-6-ulosonate (ADH). Plays a key role in an alternative pathway of the biosynthesis of 3-dehydroquinate (DHQ), which is involved in the canonical pathway for the biosynthesis of aromatic amino acids (274 aa)
 
   
  0.991
aroD
3-dehydroquinate dehydratase, type I; Involved in the third step of the chorismate pathway, which leads to the biosynthesis of aromatic amino acids. Catalyzes the cis-dehydration of 3-dehydroquinate (DHQ) and introduces the first double bond of the aromatic ring to yield 3- dehydroshikimate (246 aa)
 
   
  0.977
Mvol_1097
Prephenate dehydratase (288 aa)
     
      0.910
aroA
3-phosphoshikimate 1-carboxyvinyltransferase; Catalyzes the transfer of the enolpyruvyl moiety of phosphoenolpyruvate (PEP) to the 5-hydroxyl of shikimate-3- phosphate (S3P) to produce enolpyruvyl shikimate-3-phosphate and inorganic phosphate (456 aa)
     
      0.857
trpA
Tryptophan synthase subunit alpha; The alpha subunit is responsible for the aldol cleavage of indoleglycerol phosphate to indole and glyceraldehyde 3- phosphate (270 aa)
     
 
  0.791
Mvol_1341
Fructose-bisphosphate aldolase (332 aa)
         
  0.777
aroC
Chorismate synthase; Catalyzes the anti-1,4-elimination of the C-3 phosphate and the C-6 proR hydrogen from 5-enolpyruvylshikimate-3-phosphate (EPSP) to yield chorismate, which is the branch point compound that serves as the starting substrate for the three terminal pathways of aromatic amino acid biosynthesis. This reaction introduces a second double bond into the aromatic ring system (388 aa)
         
  0.662
Mvol_1180
Prephenate dehydrogenase (393 aa)
         
  0.637
aroE
Shikimate 5-dehydrogenase; Involved in the biosynthesis of the chorismate, which leads to the biosynthesis of aromatic amino acids. Catalyzes the reversible NADPH linked reduction of 3-dehydroshikimate (DHSA) to yield shikimate (SA) (346 aa)
              0.612
Mvol_0138
Chorismate mutase (109 aa)
              0.612
Your Current Organism:
Methanococcus voltae
NCBI taxonomy Id: 456320
Other names: M. voltae, M. voltae A3, Methanococcus voltae, Methanococcus voltae A3, Methanococcus voltae str. A3, Methanococcus voltae strain A3, Methanococcus voltaei
Server load: low (13%) [HD]