STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
dapD2,3,4,5-tetrahydropyridine-2-carboxylate N-succinyltransferase; silverDB:etchr00877. (274 aa)    
Predicted Functional Partners:
dapB
Dihydrodipicolinate reductase; Catalyzes the conversion of 4-hydroxy-tetrahydrodipicolinate (HTPA) to tetrahydrodipicolinate; Belongs to the DapB family.
 
 
 0.968
argD
Acetylornithine aminotransferase; Involved in both the arginine and lysine biosynthetic pathways; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. ArgD subfamily.
    
 0.915
glnD
[Protein-PII] uridylyltransferase; Modifies, by uridylylation and deuridylylation, the PII regulatory proteins (GlnB and homologs), in response to the nitrogen status of the cell that GlnD senses through the glutamine level. Under low glutamine levels, catalyzes the conversion of the PII proteins and UTP to PII-UMP and PPi, while under higher glutamine levels, GlnD hydrolyzes PII-UMP to PII and UMP (deuridylylation). Thus, controls uridylylation state and activity of the PII proteins, and plays an important role in the regulation of nitrogen assimilation and metabolism.
     
 0.852
guaA
GMP synthase [glutamine-hydrolyzing]; Catalyzes the synthesis of GMP from XMP.
   
  
 0.784
dapA
Dihydrodipicolinate synthase; Catalyzes the condensation of (S)-aspartate-beta-semialdehyde [(S)-ASA] and pyruvate to 4-hydroxy-tetrahydrodipicolinate (HTPA).
 
  
 0.630
pheT
Phenylalanyl-tRNA synthetase beta chain; silverDB:etchr01825; Belongs to the phenylalanyl-tRNA synthetase beta subunit family. Type 1 subfamily.
   
  
 0.598
thrA
Bifunctional aspartokinase/homoserine dehydrogenase I (AKI-HDI); silverDB:etchr00690; In the C-terminal section; belongs to the homoserine dehydrogenase family.
 
  
 0.588
map
Methionine aminopeptidase; Removes the N-terminal methionine from nascent proteins. The N-terminal methionine is often cleaved when the second residue in the primary sequence is small and uncharged (Met-Ala-, Cys, Gly, Pro, Ser, Thr, or Val). Requires deformylation of the N(alpha)-formylated initiator methionine before it can be hydrolyzed; Belongs to the peptidase M24A family. Methionine aminopeptidase type 1 subfamily.
  
  
 0.585
birA
Bifunctional protein: biotin operon repressor and biotin-[acetyl-CoA carboxylase] synthetase; Acts both as a biotin--[acetyl-CoA-carboxylase] ligase and a biotin-operon repressor. In the presence of ATP, BirA activates biotin to form the BirA-biotinyl-5'-adenylate (BirA-bio-5'-AMP or holoBirA) complex. HoloBirA can either transfer the biotinyl moiety to the biotin carboxyl carrier protein (BCCP) subunit of acetyl-CoA carboxylase, or bind to the biotin operator site and inhibit transcription of the operon.
  
  
 0.576
dapE
N-succinyl-diaminopimelate deacylase; Catalyzes the hydrolysis of N-succinyl-L,L-diaminopimelic acid (SDAP), forming succinate and LL-2,6-diaminoheptanedioate (DAP), an intermediate involved in the bacterial biosynthesis of lysine and meso-diaminopimelic acid, an essential component of bacterial cell walls; Belongs to the peptidase M20A family. DapE subfamily.
 
  
 0.555
Your Current Organism:
Erwinia tasmaniensis
NCBI taxonomy Id: 465817
Other names: E. tasmaniensis Et1/99, Erwinia tasmaniensis Et1/99, Erwinia tasmaniensis str. Et1/99, Erwinia tasmaniensis strain Et1/99
Server load: low (32%) [HD]