STRINGSTRING
AIL77534.1 protein (Acinetobacter baumannii) - STRING interaction network
"AIL77534.1" - NAD-dependent protein deacylase in Acinetobacter baumannii
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
AIL77534.1NAD-dependent protein deacylase; Derived by automated computational analysis using gene prediction method- Protein Homology (232 aa)    
Predicted Functional Partners:
gcvH
Glycine cleavage system H protein; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein (124 aa)
         
  0.605
nadE
Glutamine-dependent NAD(+) synthetase; Catalyzes the ATP-dependent amidation of deamido-NAD to form NAD. Uses L-glutamine as a nitrogen source (541 aa)
   
 
  0.509
AIL77554.1
NAD(P)H-hydrate epimerase; Derived by automated computational analysis using gene prediction method- Protein Homology (486 aa)
 
   
  0.493
AIL80251.1
Phosphate acetyltransferase; Derived by automated computational analysis using gene prediction method- Protein Homology (714 aa)
         
  0.490
AIL77532.1
AraC family transcriptional regulator; Derived by automated computational analysis using gene prediction method- Protein Homology (341 aa)
              0.489
cobT
Nicotinate-nucleotide--dimethylbenzimidazole phosphoribosyltransferase; Catalyzes the synthesis of alpha-ribazole-5’-phosphate from nicotinate mononucleotide (NAMN) and 5,6- dimethylbenzimidazole (DMB) (351 aa)
           
  0.465
AIL80356.1
DNA polymerase I; Has 3’-5’ exonuclease, 5’-3’ exonuclease and 5’-3’polymerase activities, primarily functions to fill gaps during DNA replication and repair; Derived by automated computational analysis using gene prediction method- Protein Homology (923 aa)
   
 
  0.462
acs
Acetyl-coenzyme A synthetase; Catalyzes the conversion of acetate into acetyl-CoA (AcCoA), an essential intermediate at the junction of anabolic and catabolic pathways. AcsA undergoes a two-step reaction. In the first half reaction, AcsA combines acetate with ATP to form acetyl-adenylate (AcAMP) intermediate. In the second half reaction, it can then transfer the acetyl group from AcAMP to the sulfhydryl group of CoA, forming the product AcCoA; Belongs to the ATP-dependent AMP-binding enzyme family (649 aa)
       
 
  0.452
xerC
Tyrosine recombinase XerC; Derived by automated computational analysis using gene prediction method- Protein Homology; Belongs to the ’phage’ integrase family. XerC subfamily (308 aa)
           
  0.445
AIL78586.1
NADP-dependent malic enzyme; NADP-dependent; catalyzes the oxidative decarboxylation of malate to form pyruvate; decarboxylates oxaloacetate; Derived by automated computational analysis using gene prediction method- Protein Homology (756 aa)
     
 
  0.443
Your Current Organism:
Acinetobacter baumannii
NCBI taxonomy Id: 470
Other names: A. baumannii, ATCC 19606, Acinetobacter baumannii, Acinetobacter genomosp. 2, Acinetobacter genomospecies 2, Bacterium anitratum, CCUG 19096, CIP 70.34, DSM 30007, JCM 6841, NCCB 85021, NCTC 12156
Server load: low (13%) [HD]