STRINGSTRING
hisZ protein (Acinetobacter baumannii) - STRING interaction network
"hisZ" - ATP phosphoribosyltransferase regulatory subunit in Acinetobacter baumannii
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
hisZATP phosphoribosyltransferase regulatory subunit; Required for the first step of histidine biosynthesis. May allow the feedback regulation of ATP phosphoribosyltransferase activity by histidine (388 aa)    
Predicted Functional Partners:
hisG
ATP phosphoribosyltransferase; Catalyzes the condensation of ATP and 5-phosphoribose 1- diphosphate to form N’-(5’-phosphoribosyl)-ATP (PR-ATP). Has a crucial role in the pathway because the rate of histidine biosynthesis seems to be controlled primarily by regulation of HisG enzymatic activity; Belongs to the ATP phosphoribosyltransferase family. Short subfamily (227 aa)
 
  0.996
hisE
Histidine biosynthesis bifunctional protein HisIE; Derived by automated computational analysis using gene prediction method- Protein Homology; In the N-terminal section; belongs to the PRA-CH family (257 aa)
 
   
  0.972
prs
Ribose-phosphate pyrophosphokinase; Involved in the biosynthesis of the central metabolite phospho-alpha-D-ribosyl-1-pyrophosphate (PRPP) via the transfer of pyrophosphoryl group from ATP to 1-hydroxyl of ribose-5-phosphate (Rib-5-P); Belongs to the ribose-phosphate pyrophosphokinase family. Class I subfamily (316 aa)
   
 
  0.816
AIL80874.1
Ribose-phosphate pyrophosphokinase; Derived by automated computational analysis using gene prediction method- Protein Homology (294 aa)
       
  0.810
purA
Adenylosuccinate synthetase; Plays an important role in the de novo pathway of purine nucleotide biosynthesis. Catalyzes the first committed step in the biosynthesis of AMP from IMP; Belongs to the adenylosuccinate synthetase family (439 aa)
   
        0.728
AIL80174.1
Haloacid dehalogenase; Derived by automated computational analysis using gene prediction method- Protein Homology (216 aa)
 
        0.628
metG
methionine--tRNA ligase; MetRS; adds methionine to tRNA(Met) with cleavage of ATP to AMP and diphosphate; some MetRS enzymes form dimers depending on a C-terminal domain that is also found in other proteins such as Trbp111 in Aquifex aeolicus and the cold-shock protein CsaA from Bacillus subtilis while others do not; four subfamilies exist based on sequence motifs and zinc content; Derived by automated computational analysis using gene prediction method- Protein Homology; Belongs to the class-I aminoacyl-tRNA synthetase family (687 aa)
         
  0.604
AIL80271.1
Histidine--tRNA ligase; Derived by automated computational analysis using gene prediction method- Protein Homology (430 aa)
 
   
  0.596
argJ
Arginine biosynthesis bifunctional protein ArgJ; Catalyzes two activities which are involved in the cyclic version of arginine biosynthesis- the synthesis of N- acetylglutamate from glutamate and acetyl-CoA as the acetyl donor, and of ornithine by transacetylation between N(2)-acetylornithine and glutamate; Belongs to the ArgJ family (406 aa)
   
          0.590
hom
Homoserine dehydrogenase; Catalyzes the formation of L-aspartate 4-semialdehyde from L-homoserine; Derived by automated computational analysis using gene prediction method- Protein Homology (433 aa)
 
     
  0.584
Your Current Organism:
Acinetobacter baumannii
NCBI taxonomy Id: 470
Other names: A. baumannii, ATCC 19606, Acinetobacter baumannii, Acinetobacter genomosp. 2, Acinetobacter genomospecies 2, Bacterium anitratum, CCUG 19096, CIP 70.34, DSM 30007, JCM 6841, NCCB 85021, NCTC 12156
Server load: low (16%) [HD]