STRINGSTRING
prfA protein (Acinetobacter baumannii) - STRING interaction network
"prfA" - Peptide chain release factor 1 in Acinetobacter baumannii
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
prfAPeptide chain release factor 1; Recognizes the termination signals UAG and UAA during protein translation a specificity which is dependent on amino acid residues residing in loops of the L-shaped tRNA-like molecule of RF1; this protein is similar to release factor 2; Derived by automated computational analysis using gene prediction method- Protein Homology (362 aa)    
Predicted Functional Partners:
AIL78343.1
Protein-(Glutamine-N5) methyltransferase, release factor-specific; Derived by automated computational analysis using gene prediction method- Protein Homology (273 aa)
 
  0.995
rplQ
50S ribosomal protein L17; Derived by automated computational analysis using gene prediction method- Protein Homology (125 aa)
 
 
  0.987
rpsP
30S ribosomal protein S16; Derived by automated computational analysis using gene prediction method- Protein Homology; Belongs to the bacterial ribosomal protein bS16 family (83 aa)
 
 
  0.986
rplM
50S ribosomal protein L13; This protein is one of the early assembly proteins of the 50S ribosomal subunit, although it is not seen to bind rRNA by itself. It is important during the early stages of 50S assembly (142 aa)
 
      0.985
rplC
50S ribosomal protein L3; One of the primary rRNA binding proteins, it binds directly near the 3’-end of the 23S rRNA, where it nucleates assembly of the 50S subunit (212 aa)
 
 
  0.983
rpsG
30S ribosomal protein S7; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, probably blocks exit of the E-site tRNA (156 aa)
 
 
  0.980
rpmA
50S ribosomal protein L27; Involved in the peptidyltransferase reaction during translation; Derived by automated computational analysis using gene prediction method- Protein Homology; Belongs to the bacterial ribosomal protein bL27 family (85 aa)
   
 
  0.978
rplS
50S ribosomal protein L19; This protein is located at the 30S-50S ribosomal subunit interface and may play a role in the structure and function of the aminoacyl-tRNA binding site (122 aa)
 
      0.976
rplI
50S ribosomal protein L9; Binds to the 23S rRNA (148 aa)
 
 
  0.971
rpsR
30S ribosomal protein S18; Binds as a heterodimer with protein S6 to the central domain of the 16S rRNA, where it helps stabilize the platform of the 30S subunit (75 aa)
 
      0.970
Your Current Organism:
Acinetobacter baumannii
NCBI taxonomy Id: 470
Other names: A. baumannii, ATCC 19606, Acinetobacter baumannii, Acinetobacter genomosp. 2, Acinetobacter genomospecies 2, Bacterium anitratum, CCUG 19096, CIP 70.34, DSM 30007, JCM 6841, NCCB 85021, NCTC 12156
Server load: low (11%) [HD]