STRINGSTRING
queE protein (Acinetobacter baumannii) - STRING interaction network
"queE" - 7-carboxy-7-deazaguanine synthase in Acinetobacter baumannii
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
queE7-carboxy-7-deazaguanine synthase; Catalyzes the complex heterocyclic radical-mediated conversion of 6-carboxy-5,6,7,8-tetrahydropterin (CPH4) to 7- carboxy-7-deazaguanine (CDG), a step common to the biosynthetic pathways of all 7-deazapurine-containing compounds (236 aa)    
Predicted Functional Partners:
queC
7-cyano-7-deazaguanine synthase; Catalyzes the ATP-dependent conversion of 7-carboxy-7- deazaguanine (CDG) to 7-cyano-7-deazaguanine (preQ(0)); Belongs to the QueC family (223 aa)
 
 
  0.998
AIL77496.1
6-carboxy-5,6,7,8-tetrahydropterin synthase; Derived by automated computational analysis using gene prediction method- Protein Homology (198 aa)
 
   
  0.947
queF
NADPH-dependent 7-cyano-7-deazaguanine reductase; Catalyzes the NADPH-dependent reduction of 7-cyano-7- deazaguanine (preQ0) to 7-aminomethyl-7-deazaguanine (preQ1) (270 aa)
 
     
  0.889
guaA
GMP synthase [glutamine-hydrolyzing]; Catalyzes the synthesis of GMP from XMP (522 aa)
         
  0.687
ABUW_1011
Uncharacterized protein; Derived by automated computational analysis using gene prediction method- Protein Homology (138 aa)
              0.685
dapD
2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-succinyltransferase; Catalyzes the formation of N-succinyl-2-amino-6-ketopimelate from succinyl-CoA and tetrahydrodipicolinate in the lysine biosynthetic pathway; Derived by automated computational analysis using gene prediction method- Protein Homology; Belongs to the transferase hexapeptide repeat family (273 aa)
   
        0.641
AIL80356.1
DNA polymerase I; Has 3’-5’ exonuclease, 5’-3’ exonuclease and 5’-3’polymerase activities, primarily functions to fill gaps during DNA replication and repair; Derived by automated computational analysis using gene prediction method- Protein Homology (923 aa)
         
  0.497
folE
GTP cyclohydrolase 1; Involved in the first step of tetrahydrofolate biosynthesis; catalyzes the formation of formate and 2-amino-4-hydroxy-6-(erythro-1,2, 3-trihydroxypropyl)dihydropteridine triphosphate from GTP and water; forms a homopolymer; Derived by automated computational analysis using gene prediction method- Protein Homology (184 aa)
         
  0.494
AIL79220.1
S-adenosylmethionine-tRNA ribosyltransferase-isomerase; Transfers and isomerizes the ribose moiety from AdoMet to the 7-aminomethyl group of 7-deazaguanine (preQ1-tRNA) to give epoxyqueuosine (oQ-tRNA) (345 aa)
   
   
  0.488
AIL78833.1
ATPase; Derived by automated computational analysis using gene prediction method- Protein Homology (228 aa)
              0.484
Your Current Organism:
Acinetobacter baumannii
NCBI taxonomy Id: 470
Other names: A. baumannii, ATCC 19606, Acinetobacter baumannii, Acinetobacter genomosp. 2, Acinetobacter genomospecies 2, Bacterium anitratum, CCUG 19096, CIP 70.34, DSM 30007, JCM 6841, NCCB 85021, NCTC 12156
Server load: low (15%) [HD]