STRINGSTRING
thlA_1 protein (Acinetobacter baumannii) - STRING interaction network
"thlA_1" - 3-ketoacyl-CoA thiolase [isoleucine degradation] in Acinetobacter baumannii
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
thlA_13-ketoacyl-CoA thiolase [isoleucine degradation]; Catalyzes the synthesis of acetoacetyl coenzyme A from two molecules of acetyl coenzyme A. It can also act as a thiolase, catalyzing the reverse reaction and generating two-carbon units from the four-carbon product of fatty acid oxidation; Derived by automated computational analysis using gene prediction method- Protein Homology (391 aa)    
Predicted Functional Partners:
AIL78580.1
Acyl-CoA dehydrogenase; Derived by automated computational analysis using gene prediction method- Protein Homology (821 aa)
   
 
  0.920
fadA
Acetyl-CoA C-acyltransferase FadA; FadA; fatty acid oxidation complex component beta; functions in a heterotetramer with FadB; similar to FadI2J2 complex; functions in beta-oxidation of fatty acids; Derived by automated computational analysis using gene prediction method- Protein Homology (390 aa)
   
 
 
0.919
AIL80251.1
Phosphate acetyltransferase; Derived by automated computational analysis using gene prediction method- Protein Homology (714 aa)
       
  0.914
gltA
Citrate synthase; Type II enzyme; in Escherichia coli this enzyme forms a trimer of dimers which is allosterically inhibited by NADH and competitively inhibited by alpha-ketoglutarate; allosteric inhibition is lost when Cys206 is chemically modified which also affects hexamer formation; forms oxaloacetate and acetyl-CoA and water from citrate and coenzyme A; functions in TCA cycle, glyoxylate cycle and respiration; enzyme from Helicobacter pylori is not inhibited by NADH; Derived by automated computational analysis using gene prediction method- Protein Homology; Belongs to the citrate [...] (424 aa)
   
  0.913
glcB
Malate synthase G; Involved in the glycolate utilization. Catalyzes the condensation and subsequent hydrolysis of acetyl-coenzyme A (acetyl-CoA) and glyoxylate to form malate and CoA; Belongs to the malate synthase family. GlcB subfamily (721 aa)
     
  0.912
AIL77716.1
Hydroxymethylglutaryl-CoA lyase; Derived by automated computational analysis using gene prediction method- Protein Homology (301 aa)
   
 
  0.912
leuA
2-isopropylmalate synthase; Catalyzes the condensation of the acetyl group of acetyl-CoA with 3-methyl-2-oxobutanoate (2-oxoisovalerate) to form 3-carboxy-3-hydroxy-4-methylpentanoate (2-isopropylmalate); Belongs to the alpha-IPM synthase/homocitrate synthase family. LeuA type 2 subfamily (565 aa)
   
 
  0.910
cat1
Propionyl-CoA--succinate CoA transferase; Derived by automated computational analysis using gene prediction method- Protein Homology (504 aa)
   
 
  0.909
fadB
Fatty acid oxidation complex subunit alpha; Involved in the aerobic and anaerobic degradation of long-chain fatty acids via beta-oxidation cycle. Catalyzes the formation of 3-oxoacyl-CoA from enoyl-CoA via L-3-hydroxyacyl-CoA. It can also use D-3-hydroxyacyl-CoA and cis-3-enoyl-CoA as substrate; In the N-terminal section; belongs to the enoyl-CoA hydratase/isomerase family (717 aa)
 
  0.860
AIL79158.1
3-hydroxyacyl-CoA dehydrogenase; Derived by automated computational analysis using gene prediction method- Protein Homology (711 aa)
 
  0.860
Your Current Organism:
Acinetobacter baumannii
NCBI taxonomy Id: 470
Other names: A. baumannii, ATCC 19606, Acinetobacter baumannii, Acinetobacter genomosp. 2, Acinetobacter genomospecies 2, Bacterium anitratum, CCUG 19096, CIP 70.34, DSM 30007, JCM 6841, NCCB 85021, NCTC 12156
Server load: low (16%) [HD]