STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
KIR65730.1GCN5 family acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology. (188 aa)    
Predicted Functional Partners:
ftsH
Cell division protein FtsH; Acts as a processive, ATP-dependent zinc metallopeptidase for both cytoplasmic and membrane proteins. Plays a role in the quality control of integral membrane proteins; Belongs to the AAA ATPase family. In the central section; belongs to the AAA ATPase family.
   
    0.734
KIR65731.1
Prokaryotic metallothionein; Derived by automated computational analysis using gene prediction method: Protein Homology.
       0.661
mltG
Aminodeoxychorismate lyase; Functions as a peptidoglycan terminase that cleaves nascent peptidoglycan strands endolytically to terminate their elongation. Belongs to the transglycosylase MltG family.
   
    0.622
KIR65729.1
Cellulose-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
       0.498
CobO
Cobinamide adenolsyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology.
     
 0.479
KIR65732.1
Glycoside hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology.
       0.450
HemG
Protoporphyrinogen oxidase; Catalyzes the 6-electron oxidation of protoporphyrinogen-IX to form protoporphyrin-IX.
      
 0.438
purQ
Phosphoribosylformylglycinamidine synthase; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to assist in [...]
    
  0.413
purS
Phosphoribosylformylglycinamidine synthase; Part of the phosphoribosylformylglycinamidine synthase complex involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. The FGAM synthase complex is composed of three subunits. PurQ produces an ammonia molecule by converting glutamine to glutamate. PurL transfers the ammonia molecule to FGAR to form FGAM in an ATP- dependent manner. PurS interacts with PurQ and PurL and is thought to assist in [...]
    
  0.412
Your Current Organism:
Micromonospora carbonacea
NCBI taxonomy Id: 47853
Other names: ATCC 27114, ATCC 27115, DSM 43168, DSM 43815, IFO 14107, IFO 14108, JCM 3139, M. carbonacea, Micromonospora carbonacea subsp. aurantiaca, Micromonospora carbonacea subsp. carbonacea, NBRC 14108, NRRL 2972
Server load: low (22%) [HD]