STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
TRX3Thioredoxin-3, mitochondrial; Mitochondrial thioredoxin; highly conserved oxidoreductase required to maintain the redox homeostasis of the cell, forms the mitochondrial thioredoxin system with Trr2p, redox state is maintained by both Trr2p and Glr1p (127 aa)    
Predicted Functional Partners:
TRR2
Mitochondrial thioredoxin reductase; involved in protection against oxidative stress, required with Glr1p to maintain the redox state of Trx3p; contains active-site motif (CAVC) present in prokaryotic orthologs; binds NADPH and FAD; TRR2 has a paralog, TRR1, that arose from the whole genome duplication; Belongs to the class-II pyridine nucleotide-disulfide oxidoreductase family
  
 
 0.988
TRR1
Cytoplasmic thioredoxin reductase; key regulatory enzyme that determines the redox state of the thioredoxin system, which acts as a disulfide reductase system and protects cells against both oxidative and reductive stress; protein abundance increases in response to DNA replication stress; TRR1 has a paralog, TRR2, that arose from the whole genome duplication; Belongs to the class-II pyridine nucleotide-disulfide oxidoreductase family
  
 
 0.979
GLR1
Cytosolic and mitochondrial glutathione oxidoreductase; converts oxidized glutathione to reduced glutathione; cytosolic Glr1p is the main determinant of the glutathione redox state of the mitochondrial intermembrane space; mitochondrial Glr1p has a role in resistance to hyperoxia; protein abundance increases in response to DNA replication stress
  
 
 0.970
PRX1
Mitochondrial peroxiredoxin with thioredoxin peroxidase activity; has a role in reduction of hydroperoxides; reactivation requires Trr2p and glutathione; induced during respiratory growth and oxidative stress; phosphorylated; protein abundance increases in response to DNA replication stress
  
 
 0.924
GRX2
Glutaredoxin-2, mitochondrial; Cytoplasmic glutaredoxin; thioltransferase, glutathione-dependent disulfide oxidoreductase involved in maintaining redox state of target proteins, also exhibits glutathione peroxidase activity, expression induced in response to stress; GRX2 has two in-frame start codons resulting in a shorter isoform that is retained in the cytosol and a longer form translocated to the mitochondrial matrix; GRX2 has a paralog, GRX1, that arose from the whole genome duplication
  
 
 0.886
GPX1
Glutathione peroxidase-like peroxiredoxin 1; Phospholipid hydroperoxide glutathione peroxidase; induced by glucose starvation that protects cells from phospholipid hydroperoxides and nonphospholipid peroxides during oxidative stress; GPX1 has a paralog, HYR1, that arose from the whole genome duplication
   
 
 0.881
HYR1
Glutathione peroxidase-like peroxiredoxin HYR1; Thiol peroxidase; functions as a hydroperoxide receptor to sense intracellular hydroperoxide levels and transduce a redox signal to the Yap1p transcription factor; HYR1 has a paralog, GPX1, that arose from the whole genome duplication
   
 
 0.864
GRX5
Monothiol glutaredoxin-5, mitochondrial; Glutathione-dependent oxidoreductase; mitochondrial matrix protein involved at an early step in the biogenesis of iron-sulfur centers along with Bol1p; hydroperoxide and superoxide-radical responsive; monothiol glutaredoxin subfamily member along with Grx3p and Grx4p
   
 
 0.837
CTA1
Catalase A; breaks down hydrogen peroxide in the peroxisomal matrix formed by acyl-CoA oxidase (Pox1p) during fatty acid beta-oxidation; Belongs to the catalase family
   
 
 0.808
GPX2
Glutathione peroxidase-like peroxiredoxin 2; Phospholipid hydroperoxide glutathione peroxidase; protects cells from phospholipid hydroperoxides and nonphospholipid peroxides during oxidative stress; induced by glucose starvation; protein abundance increases in response to DNA replication stress
   
 
 0.803
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: ATCC 18824, Candida robusta, NRRL Y-12632, S. cerevisiae, Saccharomyces capensis, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (18%) [HD]