STRINGSTRING
TRX3 protein (Saccharomyces cerevisiae) - STRING interaction network
"TRX3" - Mitochondrial thioredoxin, highly conserved oxidoreductase required to maintain the redox homeostasis of the cell, forms the mitochondrial thioredoxin system with Trr2p, redox state is maintained by both Trr2p and Glr1p in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
TRX3Mitochondrial thioredoxin, highly conserved oxidoreductase required to maintain the redox homeostasis of the cell, forms the mitochondrial thioredoxin system with Trr2p, redox state is maintained by both Trr2p and Glr1p (127 aa)    
Predicted Functional Partners:
TRR2
Mitochondrial thioredoxin reductase involved in protection against oxidative stress, required with Glr1p to maintain the redox state of Trx3p; contains active-site motif (CAVC) present in prokaryotic orthologs; binds NADPH and FAD; Acts on mitochondrial thioredoxin 3. Implicated in the defense against oxidative stress (342 aa)
   
 
  0.991
PRX1
Mitochondrial peroxiredoxin (1-Cys Prx) with thioredoxin peroxidase activity, has a role in reduction of hydroperoxides; reactivation requires Trr2p and glutathione; induced during respiratory growth and oxidative stress; phosphorylated; Has a thioredoxin peroxidase activity with a role in reduction of hydroperoxides (261 aa)
   
 
  0.984
GLR1
Cytosolic and mitochondrial glutathione oxidoreductase, converts oxidized glutathione to reduced glutathione; mitochondrial but not cytosolic form has a role in resistance to hyperoxia; Maintains high levels of reduced glutathione in the cytosol (483 aa)
   
 
  0.982
TRR1
Cytoplasmic thioredoxin reductase, key regulatory enzyme that determines the redox state of the thioredoxin system, which acts as a disulfide reductase system and protects cells against both oxidative and reductive stress; Acts on thioredoxins 1 and 2 (319 aa)
   
 
  0.976
GLT1
NAD(+)-dependent glutamate synthase (GOGAT), synthesizes glutamate from glutamine and alpha-ketoglutarate; with Gln1p, forms the secondary pathway for glutamate biosynthesis from ammonia; expression regulated by nitrogen source; Forms L-glutamate from L-glutamine and 2-oxoglutarate. Represents an alternative pathway to L-glutamate dehydrogenase for the biosynthesis of L-glutamate. Participates with glutamine synthetase in ammonia assimilation processes. The enzyme is specific for NADH, L-glutamine and 2-oxoglutarate (2145 aa)
   
 
  0.957
TSA1
Thioredoxin peroxidase, acts as both a ribosome-associated and free cytoplasmic antioxidant; self-associates to form a high-molecular weight chaperone complex under oxidative stress; deletion results in mutator phenotype; Physiologically important antioxidant which constitutes an enzymatic defense against sulfur-containing radicals. Can provide protection against a thiol-containing oxidation system but not against an oxidation system without thiol (196 aa)
   
 
  0.948
TSA2
Stress inducible cytoplasmic thioredoxin peroxidase; cooperates with Tsa1p in the removal of reactive oxygen, nitrogen and sulfur species using thioredoxin as hydrogen donor; deletion enhances the mutator phenotype of tsa1 mutants; Reduces peroxides. May play an important role in eliminating peroxides generated during metabolism (By similarity) (196 aa)
   
 
  0.935
AHP1
Thiol-specific peroxiredoxin, reduces hydroperoxides to protect against oxidative damage; function in vivo requires covalent conjugation to Urm1p; Thiol-specific antioxidant protein with alkyl hydroperoxidase activity. Involved in osmotic stress resistance and detoxification of the cell. Preferentially eliminates organic peroxides rather than H(2)O(2). Involved in cellular Mn(2+) homeostasis (176 aa)
     
 
  0.876
HYR1
Thiol peroxidase that functions as a hydroperoxide receptor to sense intracellular hydroperoxide levels and transduce a redox signal to the Yap1p transcription factor; Involved in oxidative stress response and redox homeostasis. Functions as a sensor and transducer of hydroperoxide stress. In response to hydroperoxide stress it oxidizes (activates) the transcription activator YAP1, which is involved in transcription activation of genes of the oxidative stress response pathway. May also play a direct role in hydroperoxide scavenging, being the most active of three closely related S.cere [...] (163 aa)
   
 
  0.869
GPX1
Phospholipid hydroperoxide glutathione peroxidase induced by glucose starvation that protects cells from phospholipid hydroperoxides and nonphospholipid peroxides during oxidative stress; May constitute a glutathione peroxidase-like protective system against oxidative stresses (167 aa)
   
 
  0.859
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (6%) [HD]