STRINGSTRING
DAK2 protein (Saccharomyces cerevisiae) - STRING interaction network
"DAK2" - Dihydroxyacetone kinase, required for detoxification of dihydroxyacetone in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
DAK2Dihydroxyacetone kinase, required for detoxification of dihydroxyacetone (DHA); involved in stress adaptation; Catalyzes both the phosphorylation of dihydroxyacetone and of glyceraldehyde (591 aa)    
Predicted Functional Partners:
TPI1
Triose phosphate isomerase, abundant glycolytic enzyme; mRNA half-life is regulated by iron availability; transcription is controlled by activators Reb1p, Gcr1p, and Rap1p through binding sites in the 5’ non-coding region; inhibition of Tpi1p activi /.../PEP (phosphoenolpyruvate) stimulates redox metabolism in respiring cells; E104D mutation in human TPI causes a rare autosomal disease (248 aa)
   
 
  0.979
FBA1
Fructose 1,6-bisphosphate aldolase, required for glycolysis and gluconeogenesis; catalyzes conversion of fructose 1,6 bisphosphate to glyceraldehyde-3-P and dihydroxyacetone-P; locates to mitochondrial outer surface upon oxidative stress; Catalyzes the aldol condensation of dihydroxyacetone phosphate (DHAP or glycerone-phosphate) with glyceraldehyde 3- phosphate (G3P) to form fructose 1,6-bisphosphate (FBP) in gluconeogenesis and the reverse reaction in glycolysis (359 aa)
   
 
  0.974
GCY1
Putative NADP(+) coupled glycerol dehydrogenase, proposed to be involved in an alternative pathway for glycerol catabolism; also has mRNA binding activity; member of the aldo-keto reductase (AKR) family; Glycerol dehydrogenase involved in glycerol catabolism under microaerobic conditions. Has mRNA binding activity (312 aa)
     
 
  0.961
GUT2
Mitochondrial glycerol-3-phosphate dehydrogenase; expression is repressed by both glucose and cAMP and derepressed by non-fermentable carbon sources in a Snf1p, Rsf1p, Hap2/3/4/5 complex dependent manner (649 aa)
       
  0.921
DAK1
Dihydroxyacetone kinase, required for detoxification of dihydroxyacetone (DHA); involved in stress adaptation; Catalyzes both the phosphorylation of dihydroxyacetone and of glyceraldehyde (584 aa)
   
 
0.879
GPD1
NAD-dependent glycerol-3-phosphate dehydrogenase, key enzyme of glycerol synthesis, essential for growth under osmotic stress; expression regulated by high-osmolarity glycerol response pathway; homolog of Gpd2p; Catalyzes the production and accumulation of glycerol during hyperosmotic stress conditions. Glycerol acts as a osmoregulator that prevents loss of water and turgor of the cells (391 aa)
         
  0.815
GPD2
NAD-dependent glycerol 3-phosphate dehydrogenase, homolog of Gpd1p, expression is controlled by an oxygen-independent signaling pathway required to regulate metabolism under anoxic conditions; located in cytosol and mitochondria; Catalyzes the production of glycerol under anaerobic growth conditions. Glycerol production serves as a redox sink by consuming the excess cytosolic NADH during anaerobic metabolism (440 aa)
         
  0.809
GPT2
Glycerol-3-phosphate/dihydroxyacetone phosphate dual substrate-specific sn-1 acyltransferase located in lipid particles and the ER; involved in the stepwise acylation of glycerol-3-phosphate and dihydroxyacetone in lipid biosynthesis; G-3-P/dihydroxyacetone phosphate dual substrate-specific sn-1 acyltransferase (743 aa)
         
    0.800
SCT1
Glycerol 3-phosphate/dihydroxyacetone phosphate dual substrate-specific sn-1 acyltransferase of the glycerolipid biosynthesis pathway, prefers 16-carbon fatty acids, similar to Gpt2p, gene is constitutively transcribed; G-3-P/dihydroxyacetone phosphate dual substrate-specific sn-1 acyltransferase (759 aa)
         
    0.800
GUT1
Glycerol kinase, converts glycerol to glycerol-3-phosphate; glucose repression of expression is mediated by Adr1p and Ino2p-Ino4p; derepression of expression on non-fermentable carbon sources is mediated by Opi1p and Rsf1p (709 aa)
         
  0.744
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (8%) [HD]