STRINGSTRING
MDH1 protein (Saccharomyces cerevisiae) - STRING interaction network
"MDH1" - Mitochondrial malate dehydrogenase, catalyzes interconversion of malate and oxaloacetate in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
MDH1Mitochondrial malate dehydrogenase, catalyzes interconversion of malate and oxaloacetate; involved in the tricarboxylic acid (TCA) cycle; phosphorylated (334 aa)    
Predicted Functional Partners:
CIT1
Citrate synthase, catalyzes the condensation of acetyl coenzyme A and oxaloacetate to form citrate; the rate-limiting enzyme of the TCA cycle; nuclear encoded mitochondrial protein; Specific citrate synthase with catalytic activity only with acetyl-CoA (479 aa)
   
  0.999
FUM1
Fumarase, converts fumaric acid to L-malic acid in the TCA cycle; cytosolic and mitochondrial distribution determined by the N-terminal targeting sequence, protein conformation, and status of glyoxylate shunt; phosphorylated in mitochondria (488 aa)
   
  0.998
CIT2
Citrate synthase, catalyzes the condensation of acetyl coenzyme A and oxaloacetate to form citrate, peroxisomal isozyme involved in glyoxylate cycle; expression is controlled by Rtg1p and Rtg2p transcription factors (460 aa)
   
  0.996
CIT3
Dual specificity mitochondrial citrate and methylcitrate synthase; catalyzes the condensation of acetyl-CoA and oxaloacetate to form citrate and that of propionyl-CoA and oxaloacetate to form 2-methylcitrate; Dual specificity mitochondrial citrate and methylcitrate synthase with similar catalytic efficiency with both acetyl-CoA and propionyl-CoA (486 aa)
   
  0.995
AAT1
Mitochondrial aspartate aminotransferase, catalyzes the conversion of oxaloacetate to aspartate in aspartate and asparagine biosynthesis; Plays a key role in amino acid metabolism. Important for metabolite exchange between mitochondria and cytosol (By similarity) (451 aa)
     
  0.989
NDI1
NADH-ubiquinone oxidoreductase, transfers electrons from NADH to ubiquinone in the respiratory chain but does not pump protons, in contrast to the higher eukaryotic multisubunit respiratory complex I; phosphorylated; homolog of human AMID; Catalyzes the oxidation of NADH generated inside the Mitochondrion (513 aa)
     
 
  0.987
AAT2
Cytosolic aspartate aminotransferase involved in nitrogen metabolism; localizes to peroxisomes in oleate-grown cells; Plays a key role in amino acid metabolism (418 aa)
     
  0.986
MAE1
Mitochondrial malic enzyme, catalyzes the oxidative decarboxylation of malate to pyruvate, which is a key intermediate in sugar metabolism and a precursor for synthesis of several amino acids (669 aa)
   
 
  0.984
MLS1
Malate synthase, enzyme of the glyoxylate cycle, involved in utilization of non-fermentable carbon sources; expression is subject to carbon catabolite repression; localizes in peroxisomes during growth in oleic acid medium; This isozyme is necessary for growth on acetate as sole C-source (554 aa)
     
 
  0.980
ATP3
Gamma subunit of the F1 sector of mitochondrial F1F0 ATP synthase, which is a large, evolutionarily conserved enzyme complex required for ATP synthesis; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral st [...] (311 aa)
   
 
  0.979
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (8%) [HD]