STRINGSTRING
KAE1 protein (Saccharomyces cerevisiae) - STRING interaction network
"KAE1" - Highly conserved ATPase of HSP70/DnaK family in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
KAE1Highly conserved ATPase of HSP70/DnaK family; component of the EKC/KEOPS complex with Bud32p, Cgi121p, Pcc1p, and Gon7p; EKC/KEOPS complex is required for t6A tRNA modification and may have roles in telomere maintenance and transcription; Component of the EKC/KEOPS complex that is required for the formation of a threonylcarbamoyl group on adenosine at position 37 (t(6)A37) in tRNAs that read codons beginning with adenine. The complex is probably involved in the transfer of the threonylcarbamoyl moiety of threonylcarbamoyl-AMP (TC-AMP) to the N6 group of A37. KAE1 likely plays a direct [...] (386 aa)    
Predicted Functional Partners:
BUD32
Protein kinase, component of the EKC/KEOPS complex with Kae1p, Cgi121p, Pcc1p, and Gon7p; EKC/KEOPS complex is required for t6A tRNA modification and may have roles in telomere maintenance and transcription; Component of the EKC/KEOPS complex that is required for the formation of a threonylcarbamoyl group on adenosine at position 37 (t(6)A37) in tRNAs that read codons beginning with adenine. The complex is probably involved in the transfer of the threonylcarbamoyl moiety of threonylcarbamoyl-AMP (TC-AMP) to the N6 group of A37. BUD32 has ATPase activity in the context of the EKC/KEOPS [...] (261 aa)
  0.999
CGI121
Component of the EKC/KEOPS complex with Bud32p, Kae1p, Pcc1p, and Gon7p; EKC/KEOPS complex is required for t6A tRNA modification and may have roles in telomere maintenance and transcription; Cgi121p is dispensable for tRNA modification; Component of the EKC/KEOPS complex that is required for the formation of a threonylcarbamoyl group on adenosine at position 37 (t(6)A37) in tRNAs that read codons beginning with adenine. The complex is probably involved in the transfer of the threonylcarbamoyl moiety of threonylcarbamoyl-AMP (TC-AMP) to the N6 group of A37. CGI121 acts as an allosteric [...] (181 aa)
       
  0.999
GON7
Component of the EKC/KEOPS protein complex with Kae1p, Cgi121p, Pcc1p, and Bud32p; EKC/KEOPS complex is required for t6A tRNA modification and may have roles in telomere maintenance and transcription; implicated in osmotic stress response; Component of the EKC/KEOPS complex that is required for the formation of a threonylcarbamoyl group on adenosine at position 37 (t(6)A37) in tRNAs that read codons beginning with adenine. The complex is probably involved in the transfer of the threonylcarbamoyl moiety of threonylcarbamoyl-AMP (TC-AMP) to the N6 group of A37. GON7 likely plays a suppor [...] (123 aa)
     
  0.998
PCC1
Component of the EKC/KEOPS protein complex with Kae1p, Gon7p, Bud32p, and Cgi121p; EKC/KEOPS complex is required for t6A tRNA modification and may have roles in telomere maintenance and transcription; Component of the EKC/KEOPS complex that is required for the formation of a threonylcarbamoyl group on adenosine at position 37 (t(6)A37) in tRNAs that read codons beginning with adenine. The complex is probably involved in the transfer of the threonylcarbamoyl moiety of threonylcarbamoyl-AMP (TC-AMP) to the N6 group of A37. PCC1 functions as a dimerization module for the complex. The EKC/ [...] (88 aa)
       
  0.997
SUA5
Single-stranded telomeric DNA-binding protein, required for normal telomere length; null mutant lacks N6-threonylcarbamoyl adenosine (t6A) modification in the anticodon loop of ANN-decoding tRNA; member of conserved YrdC/Sua5 family; Required for the formation of a threonylcarbamoyl group on adenosine at position 37 (t(6)A37) in tRNAs that read codons beginning with adenine. Likely catalyzes the conversion of L- threonine, HCO(3)(-)/CO(2) and ATP to give threonylcarbamoyl-AMP (TC-AMP) as the acyladenylate intermediate, with the release of diphosphate. Required for normal translation, b [...] (426 aa)
   
 
  0.948
GRX4
Hydroperoxide and superoxide-radical responsive glutathione-dependent oxidoreductase; monothiol glutaredoxin subfamily member along with Grx3p and Grx5p; protects cells from oxidative damage; mutant has increased aneuploidy tolerance; Monothiol glutaredoxin involved in the biogenesis of iron-sulfur clusters (By similarity). Binds one iron-sulfur cluster per dimer. The iron-sulfur cluster is bound between subunits, and is complexed by a bound glutathione and a cysteine residue from each subunit (Probable) (244 aa)
   
 
  0.897
QRI7
Highly conserved mitochondrial protein, essential for t6A modification of mitochondrial tRNAs that decode ANN codons; similar to Kae1p and E. coli YgjD, both of which are also required for tRNA t6A modification; Required for the formation of a threonylcarbamoyl group on adenosine at position 37 (t(6)A37) in mitochondrial tRNAs that read codons beginning with adenine. Probably involved in the transfer of the threonylcarbamoyl moiety of threonylcarbamoyl-AMP (TC-AMP) to the N6 group of A37. Involved in mitochondrial genome maintenance (407 aa)
   
 
0.808
FEX2
Putative protein of unknown function (375 aa)
     
      0.789
FEX1
Putative protein of unknown function (375 aa)
     
      0.789
CAM1
Nuclear protein required for transcription of MXR1; binds the MXR1 promoter in the presence of other nuclear factors; binds calcium and phospholipids; has similarity to translational cofactor EF-1 gamma; Subunit of the eukaryotic elongation factor 1 complex (eEF1). Probably plays a role in anchoring the complex to other cellular components. May be involved in transcriptional regulation of MXR1 (415 aa)
     
      0.776
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (8%) [HD]