node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
AFT1 | AFT2 | YGL071W | YPL202C | Iron-regulated transcriptional activator AFT1; Transcription factor involved in iron utilization and homeostasis; binds consensus site PyPuCACCCPu and activates transcription in response to changes in iron availability; in iron-replete conditions localization is regulated by Grx3p, Grx4p, and Fra2p, and promoter binding is negatively regulated via Grx3p-Grx4p binding; AFT1 has a paralog, AFT2, that arose from the whole genome duplication; relative distribution to the nucleus increases upon DNA replication stress. | Iron-regulated transcriptional activator; activates genes involved in intracellular iron use and required for iron homeostasis and resistance to oxidative stress; AFT2 has a paralog, AFT1, that arose from the whole genome duplication. | 0.912 |
AFT1 | CCC1 | YGL071W | YLR220W | Iron-regulated transcriptional activator AFT1; Transcription factor involved in iron utilization and homeostasis; binds consensus site PyPuCACCCPu and activates transcription in response to changes in iron availability; in iron-replete conditions localization is regulated by Grx3p, Grx4p, and Fra2p, and promoter binding is negatively regulated via Grx3p-Grx4p binding; AFT1 has a paralog, AFT2, that arose from the whole genome duplication; relative distribution to the nucleus increases upon DNA replication stress. | Protein CCC1; Vacuolar Fe2+/Mn2+ transporter; suppresses respiratory deficit of yfh1 mutants, which lack the ortholog of mammalian frataxin, by preventing mitochondrial iron accumulation; relative distribution to the vacuole decreases upon DNA replication stress. | 0.897 |
AFT1 | FET3 | YGL071W | YMR058W | Iron-regulated transcriptional activator AFT1; Transcription factor involved in iron utilization and homeostasis; binds consensus site PyPuCACCCPu and activates transcription in response to changes in iron availability; in iron-replete conditions localization is regulated by Grx3p, Grx4p, and Fra2p, and promoter binding is negatively regulated via Grx3p-Grx4p binding; AFT1 has a paralog, AFT2, that arose from the whole genome duplication; relative distribution to the nucleus increases upon DNA replication stress. | Iron transport multicopper oxidase FET3; Ferro-O2-oxidoreductase; multicopper oxidase that oxidizes ferrous (Fe2+) to ferric iron (Fe3+) for subsequent cellular uptake by transmembrane permease Ftr1p; required for high-affinity iron uptake and involved in mediating resistance to copper ion toxicity, belongs to class of integral membrane multicopper oxidases; protein abundance increases in response to DNA replication stress. | 0.993 |
AFT1 | MRS4 | YGL071W | YKR052C | Iron-regulated transcriptional activator AFT1; Transcription factor involved in iron utilization and homeostasis; binds consensus site PyPuCACCCPu and activates transcription in response to changes in iron availability; in iron-replete conditions localization is regulated by Grx3p, Grx4p, and Fra2p, and promoter binding is negatively regulated via Grx3p-Grx4p binding; AFT1 has a paralog, AFT2, that arose from the whole genome duplication; relative distribution to the nucleus increases upon DNA replication stress. | Mitochondrial RNA-splicing protein MRS4; Iron transporter of the mitochondrial carrier family; mediates Fe2+ transport across the inner mitochondrial membrane; active under low-iron conditions; may transport other cations; protein abundance increases in response to DNA replication stress; MRS4 has a paralog, MRS3, that arose from the whole genome duplication. | 0.805 |
AFT1 | SMF3 | YGL071W | YLR034C | Iron-regulated transcriptional activator AFT1; Transcription factor involved in iron utilization and homeostasis; binds consensus site PyPuCACCCPu and activates transcription in response to changes in iron availability; in iron-replete conditions localization is regulated by Grx3p, Grx4p, and Fra2p, and promoter binding is negatively regulated via Grx3p-Grx4p binding; AFT1 has a paralog, AFT2, that arose from the whole genome duplication; relative distribution to the nucleus increases upon DNA replication stress. | Iron transporter SMF3; Putative divalent metal ion transporter involved in iron homeostasis; transcriptionally regulated by metal ions; member of the Nramp family of metal transport proteins; protein abundance increases in response to DNA replication stress. | 0.836 |
AFT1 | YFH1 | YGL071W | YDL120W | Iron-regulated transcriptional activator AFT1; Transcription factor involved in iron utilization and homeostasis; binds consensus site PyPuCACCCPu and activates transcription in response to changes in iron availability; in iron-replete conditions localization is regulated by Grx3p, Grx4p, and Fra2p, and promoter binding is negatively regulated via Grx3p-Grx4p binding; AFT1 has a paralog, AFT2, that arose from the whole genome duplication; relative distribution to the nucleus increases upon DNA replication stress. | Frataxin homolog intermediate form; Mitochondrial matrix iron chaperone; oxidizes and stores iron; interacts with Isu1p to promote Fe-S cluster assembly; mutation results in multiple Fe/S-dependent enzyme deficiencies; human frataxin homolog FXN is mutated in Friedrich's ataxia; human FTL gene can complement yeast yfh1 null mutant. | 0.840 |
AFT2 | AFT1 | YPL202C | YGL071W | Iron-regulated transcriptional activator; activates genes involved in intracellular iron use and required for iron homeostasis and resistance to oxidative stress; AFT2 has a paralog, AFT1, that arose from the whole genome duplication. | Iron-regulated transcriptional activator AFT1; Transcription factor involved in iron utilization and homeostasis; binds consensus site PyPuCACCCPu and activates transcription in response to changes in iron availability; in iron-replete conditions localization is regulated by Grx3p, Grx4p, and Fra2p, and promoter binding is negatively regulated via Grx3p-Grx4p binding; AFT1 has a paralog, AFT2, that arose from the whole genome duplication; relative distribution to the nucleus increases upon DNA replication stress. | 0.912 |
AFT2 | CCC1 | YPL202C | YLR220W | Iron-regulated transcriptional activator; activates genes involved in intracellular iron use and required for iron homeostasis and resistance to oxidative stress; AFT2 has a paralog, AFT1, that arose from the whole genome duplication. | Protein CCC1; Vacuolar Fe2+/Mn2+ transporter; suppresses respiratory deficit of yfh1 mutants, which lack the ortholog of mammalian frataxin, by preventing mitochondrial iron accumulation; relative distribution to the vacuole decreases upon DNA replication stress. | 0.805 |
AFT2 | FET3 | YPL202C | YMR058W | Iron-regulated transcriptional activator; activates genes involved in intracellular iron use and required for iron homeostasis and resistance to oxidative stress; AFT2 has a paralog, AFT1, that arose from the whole genome duplication. | Iron transport multicopper oxidase FET3; Ferro-O2-oxidoreductase; multicopper oxidase that oxidizes ferrous (Fe2+) to ferric iron (Fe3+) for subsequent cellular uptake by transmembrane permease Ftr1p; required for high-affinity iron uptake and involved in mediating resistance to copper ion toxicity, belongs to class of integral membrane multicopper oxidases; protein abundance increases in response to DNA replication stress. | 0.841 |
AFT2 | MRS4 | YPL202C | YKR052C | Iron-regulated transcriptional activator; activates genes involved in intracellular iron use and required for iron homeostasis and resistance to oxidative stress; AFT2 has a paralog, AFT1, that arose from the whole genome duplication. | Mitochondrial RNA-splicing protein MRS4; Iron transporter of the mitochondrial carrier family; mediates Fe2+ transport across the inner mitochondrial membrane; active under low-iron conditions; may transport other cations; protein abundance increases in response to DNA replication stress; MRS4 has a paralog, MRS3, that arose from the whole genome duplication. | 0.806 |
AFT2 | SMF3 | YPL202C | YLR034C | Iron-regulated transcriptional activator; activates genes involved in intracellular iron use and required for iron homeostasis and resistance to oxidative stress; AFT2 has a paralog, AFT1, that arose from the whole genome duplication. | Iron transporter SMF3; Putative divalent metal ion transporter involved in iron homeostasis; transcriptionally regulated by metal ions; member of the Nramp family of metal transport proteins; protein abundance increases in response to DNA replication stress. | 0.838 |
AFT2 | YFH1 | YPL202C | YDL120W | Iron-regulated transcriptional activator; activates genes involved in intracellular iron use and required for iron homeostasis and resistance to oxidative stress; AFT2 has a paralog, AFT1, that arose from the whole genome duplication. | Frataxin homolog intermediate form; Mitochondrial matrix iron chaperone; oxidizes and stores iron; interacts with Isu1p to promote Fe-S cluster assembly; mutation results in multiple Fe/S-dependent enzyme deficiencies; human frataxin homolog FXN is mutated in Friedrich's ataxia; human FTL gene can complement yeast yfh1 null mutant. | 0.442 |
CCC1 | AFT1 | YLR220W | YGL071W | Protein CCC1; Vacuolar Fe2+/Mn2+ transporter; suppresses respiratory deficit of yfh1 mutants, which lack the ortholog of mammalian frataxin, by preventing mitochondrial iron accumulation; relative distribution to the vacuole decreases upon DNA replication stress. | Iron-regulated transcriptional activator AFT1; Transcription factor involved in iron utilization and homeostasis; binds consensus site PyPuCACCCPu and activates transcription in response to changes in iron availability; in iron-replete conditions localization is regulated by Grx3p, Grx4p, and Fra2p, and promoter binding is negatively regulated via Grx3p-Grx4p binding; AFT1 has a paralog, AFT2, that arose from the whole genome duplication; relative distribution to the nucleus increases upon DNA replication stress. | 0.897 |
CCC1 | AFT2 | YLR220W | YPL202C | Protein CCC1; Vacuolar Fe2+/Mn2+ transporter; suppresses respiratory deficit of yfh1 mutants, which lack the ortholog of mammalian frataxin, by preventing mitochondrial iron accumulation; relative distribution to the vacuole decreases upon DNA replication stress. | Iron-regulated transcriptional activator; activates genes involved in intracellular iron use and required for iron homeostasis and resistance to oxidative stress; AFT2 has a paralog, AFT1, that arose from the whole genome duplication. | 0.805 |
CCC1 | FET3 | YLR220W | YMR058W | Protein CCC1; Vacuolar Fe2+/Mn2+ transporter; suppresses respiratory deficit of yfh1 mutants, which lack the ortholog of mammalian frataxin, by preventing mitochondrial iron accumulation; relative distribution to the vacuole decreases upon DNA replication stress. | Iron transport multicopper oxidase FET3; Ferro-O2-oxidoreductase; multicopper oxidase that oxidizes ferrous (Fe2+) to ferric iron (Fe3+) for subsequent cellular uptake by transmembrane permease Ftr1p; required for high-affinity iron uptake and involved in mediating resistance to copper ion toxicity, belongs to class of integral membrane multicopper oxidases; protein abundance increases in response to DNA replication stress. | 0.812 |
CCC1 | MRS4 | YLR220W | YKR052C | Protein CCC1; Vacuolar Fe2+/Mn2+ transporter; suppresses respiratory deficit of yfh1 mutants, which lack the ortholog of mammalian frataxin, by preventing mitochondrial iron accumulation; relative distribution to the vacuole decreases upon DNA replication stress. | Mitochondrial RNA-splicing protein MRS4; Iron transporter of the mitochondrial carrier family; mediates Fe2+ transport across the inner mitochondrial membrane; active under low-iron conditions; may transport other cations; protein abundance increases in response to DNA replication stress; MRS4 has a paralog, MRS3, that arose from the whole genome duplication. | 0.951 |
CCC1 | RIM2 | YLR220W | YBR192W | Protein CCC1; Vacuolar Fe2+/Mn2+ transporter; suppresses respiratory deficit of yfh1 mutants, which lack the ortholog of mammalian frataxin, by preventing mitochondrial iron accumulation; relative distribution to the vacuole decreases upon DNA replication stress. | Mitochondrial carrier protein RIM2; Mitochondrial pyrimidine nucleotide transporter; imports pyrimidine nucleoside triphosphates and exports pyrimidine nucleoside monophosphates; member of the mitochondrial carrier family. | 0.762 |
CCC1 | SMF3 | YLR220W | YLR034C | Protein CCC1; Vacuolar Fe2+/Mn2+ transporter; suppresses respiratory deficit of yfh1 mutants, which lack the ortholog of mammalian frataxin, by preventing mitochondrial iron accumulation; relative distribution to the vacuole decreases upon DNA replication stress. | Iron transporter SMF3; Putative divalent metal ion transporter involved in iron homeostasis; transcriptionally regulated by metal ions; member of the Nramp family of metal transport proteins; protein abundance increases in response to DNA replication stress. | 0.921 |
CCC1 | YFH1 | YLR220W | YDL120W | Protein CCC1; Vacuolar Fe2+/Mn2+ transporter; suppresses respiratory deficit of yfh1 mutants, which lack the ortholog of mammalian frataxin, by preventing mitochondrial iron accumulation; relative distribution to the vacuole decreases upon DNA replication stress. | Frataxin homolog intermediate form; Mitochondrial matrix iron chaperone; oxidizes and stores iron; interacts with Isu1p to promote Fe-S cluster assembly; mutation results in multiple Fe/S-dependent enzyme deficiencies; human frataxin homolog FXN is mutated in Friedrich's ataxia; human FTL gene can complement yeast yfh1 null mutant. | 0.798 |
FET3 | AFT1 | YMR058W | YGL071W | Iron transport multicopper oxidase FET3; Ferro-O2-oxidoreductase; multicopper oxidase that oxidizes ferrous (Fe2+) to ferric iron (Fe3+) for subsequent cellular uptake by transmembrane permease Ftr1p; required for high-affinity iron uptake and involved in mediating resistance to copper ion toxicity, belongs to class of integral membrane multicopper oxidases; protein abundance increases in response to DNA replication stress. | Iron-regulated transcriptional activator AFT1; Transcription factor involved in iron utilization and homeostasis; binds consensus site PyPuCACCCPu and activates transcription in response to changes in iron availability; in iron-replete conditions localization is regulated by Grx3p, Grx4p, and Fra2p, and promoter binding is negatively regulated via Grx3p-Grx4p binding; AFT1 has a paralog, AFT2, that arose from the whole genome duplication; relative distribution to the nucleus increases upon DNA replication stress. | 0.993 |