STRINGSTRING
HUG1 protein (Saccharomyces cerevisiae) - STRING interaction network
"HUG1" - Protein involved in the Mec1p-mediated checkpoint pathway that responds to DNA damage or replication arrest, transcription is induced by DNA damage in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
HUG1Protein involved in the Mec1p-mediated checkpoint pathway that responds to DNA damage or replication arrest, transcription is induced by DNA damage; Involved in the MEC1-mediated checkpoint response to DNA damage and replication arrest (68 aa)    
Predicted Functional Partners:
RNR2
Ribonucleotide-diphosphate reductase (RNR), small subunit; the RNR complex catalyzes the rate-limiting step in dNTP synthesis and is regulated by DNA replication and DNA damage checkpoint pathways via localization of the small subunits; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. RNR2 provides the diiron-tyrosyl radical center (399 aa)
     
 
  0.831
PGM2
Phosphoglucomutase, catalyzes the conversion from glucose-1-phosphate to glucose-6-phosphate, which is a key step in hexose metabolism; functions as the acceptor for a Glc-phosphotransferase; Major phosphoglucomutase isozyme that catalyzes the reversible interconversion of glucose 1-phosphate and glucose 6- phosphate (PubMed-5784209). Constitutes about 80-90% of the phosphoglucomutase activity in the cell (PubMed-14264884, PubMed-5231755). Key enzyme in hexose metabolism. The forward reaction is an essential step in the energy metabolism of galactose since the product of the galactose [...] (569 aa)
       
 
  0.806
RNR4
Ribonucleotide-diphosphate reductase (RNR), small subunit; the RNR complex catalyzes the rate-limiting step in dNTP synthesis and is regulated by DNA replication and DNA damage checkpoint pathways via localization of the small subunits; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. RNR4 is required for proper folding of RNR2 and assembly with the large subunits (345 aa)
     
 
  0.791
DUN1
Cell-cycle checkpoint serine-threonine kinase required for DNA damage-induced transcription of certain target genes, phosphorylation of Rad55p and Sml1p, and transient G2/M arrest after DNA damage; also regulates postreplicative DNA repair; Transducer of the DNA damage signal. Phosphorylates SML1 on serine residues. Cooperates with the PAN deadenylation complex in the regulation of RAD5 mRNA levels and cell survival in response to replicational stress (513 aa)
           
  0.779
MEC1
Genome integrity checkpoint protein and PI kinase superfamily member; signal transducer required for cell cycle arrest and transcriptional responses prompted by damaged or unreplicated DNA; monitors and participates in meiotic recombination; Serine/threonine protein kinase which activates checkpoint signaling upon genotoxic stresses such as ionizing radiation (IR), ultraviolet light (UV), or DNA replication stalling, thereby acting as a DNA damage sensor. Recognizes the substrate consensus sequence [ST]-Q. Recruited in complex with protein LCD1 by the single-strand-binding protein comp [...] (2368 aa)
       
 
  0.722
RAD53
Protein kinase, required for cell-cycle arrest in response to DNA damage; activated by trans autophosphorylation when interacting with hyperphosphorylated Rad9p; also interacts with ARS1 and plays a role in initiation of DNA replication; Controls S-phase checkpoint as well as G1 and G2 DNA damage checkpoints. Phosphorylates proteins on serine, threonine, and tyrosine. Prevents entry into anaphase and mitotic exit after DNA damage via regulation of the Polo kinase CDC5. Seems to be involved in the phosphorylation of RPH1 (821 aa)
           
  0.720
RNR3
Minor isoform of the large subunit of ribonucleotide-diphosphate reductase; the RNR complex catalyzes rate-limiting step in dNTP synthesis, regulated by DNA replication and DNA damage checkpoint pathways via localization of small subunits; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides (869 aa)
     
   
  0.718
SML1
Ribonucleotide reductase inhibitor involved in regulating dNTP production; regulated by Mec1p and Rad53p during DNA damage and S phase; Strong inhibitor of ribonucleotide reductase (RNR1) and is involved in regulating dNTP production (104 aa)
           
  0.641
DNA2
Tripartite DNA replication factor with single-stranded DNA-dependent ATPase, ATP-dependent nuclease, and helicase activities; required for Okazaki fragment processing; involved in DNA repair; cell-cycle dependent localization; Key enzyme involved in DNA replication and DNA repair. Involved in Okazaki fragments processing by cleaving long flaps that escape FEN1- flaps that are longer than 27 nucleotides are coated by replication protein A complex (RPA), leading to recruit DNA2 which cleaves the flap until it is too short to bind RPA and becomes a substrate for FEN1. Also involved in 5’- [...] (1522 aa)
       
 
  0.582
TUP1
General repressor of transcription, forms complex with Cyc8p, involved in the establishment of repressive chromatin structure through interactions with histones H3 and H4, appears to enhance expression of some genes; Acts as component of the CYC8-TUP1 corepressor complex which is involved in the repression of many genes in a wide variety of physiological processes including heme-regulated and catabolite repressed genes. May also be involved in the derepression of at least some target genes. The complex is recruited to target genes by interaction with DNA-bound transcriptional repressor [...] (713 aa)
       
 
  0.503
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (3%) [HD]