STRINGSTRING
HUG1 protein (Saccharomyces cerevisiae) - STRING interaction network
"HUG1" - MEC1-mediated checkpoint protein HUG1 in Saccharomyces cerevisiae
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
HUG1MEC1-mediated checkpoint protein HUG1; Ribonucleotide reductase inhibitor; intrinsically disordered protein that binds to and inhibits Rnr2p; involved in the Mec1p-mediated checkpoint pathway; transcription is induced by genotoxic stress and by activation of the Rad53p pathway; protein abundance increases in response to DNA replication stress (68 aa)    
Predicted Functional Partners:
RNR2
Ribonucleoside-diphosphate reductase small chain 1; Ribonucleotide-diphosphate reductase (RNR), small subunit; the RNR complex catalyzes the rate-limiting step in dNTP synthesis and is regulated by DNA replication and DNA damage checkpoint pathways via localization of the small subunits; RNR2 has a paralog, RNR4, that arose from the whole genome duplication; Belongs to the ribonucleoside diphosphate reductase small chain family (399 aa)
     
 
  0.938
RNR3
Ribonucleoside-diphosphate reductase large chain 2; Minor isoform of large subunit of ribonucleotide-diphosphate reductase; the RNR complex catalyzes rate-limiting step in dNTP synthesis, regulated by DNA replication and DNA damage checkpoint pathways via localization of small subunits; RNR3 has a paralog, RNR1, that arose from the whole genome duplication (869 aa)
     
   
  0.904
RNR4
Ribonucleoside-diphosphate reductase small chain 2; Ribonucleotide-diphosphate reductase (RNR) small subunit; the RNR complex catalyzes the rate-limiting step in dNTP synthesis and is regulated by DNA replication and DNA damage checkpoint pathways via localization of the small subunits; relocalizes from nucleus to cytoplasm upon DNA replication stress; RNR4 has a paralog, RNR2, that arose from the whole genome duplication (345 aa)
     
 
  0.892
DUN1
DNA damage response protein kinase DUN1; Cell-cycle checkpoint S/T protein kinase; required for transient G2/M arrest after DNA damage, damage-induced transcription, and nuclear-to-cytoplasmic redistribution of Rnr2p-Rnr4p after genotoxic stress and iron deprivation; phosphorylates repair protein Rad55p, transcriptional repressor Sml1p, superoxide dismutase, and ribonucleotide reductase inhibitors Crt1p and Dif1p; functions in the Mec1p pathway to regulate dNTP pools and telomere length; postreplicative repair role (513 aa)
           
  0.880
MEC1
Serine/threonine-protein kinase MEC1; Genome integrity checkpoint protein and PI kinase superfamily member; Mec1p and Dun1p function in same pathway to regulate dNTP pools and telomere length; signal transducer required for cell cycle arrest and transcriptional responses to damaged or unreplicated DNA; facilitates replication fork progression and regulates P-body formation under replication stress; promotes interhomolog recombination by phosphorylating Hop1p; associates with shortened, dysfunctional telomeres; Belongs to the PI3/PI4-kinase family. ATM subfamily (2368 aa)
       
 
  0.840
DIF1
Damage-regulated import facilitator 1; Protein that regulates nuclear localization of Rnr2p and Rnr4p; phosphorylated by Dun1p in response to DNA damage and degraded; N-terminal half shows similarity to S. pombe Spd1 protein; DIF1 has a paralog, SML1, that arose from the whole genome duplication (133 aa)
           
  0.781
SML1
Ribonucleotide reductase inhibitor; involved in regulating dNTP production; regulated by Mec1p and Rad53p during DNA damage and S phase; SML1 has a paralog, DIF1, that arose from the whole genome duplication (104 aa)
           
  0.767
PGM2
Phosphoglucomutase; catalyzes the conversion from glucose-1-phosphate to glucose-6-phosphate, which is a key step in hexose metabolism; functions as the acceptor for a Glc-phosphotransferase; protein abundance increases in response to DNA replication stress; PGM2 has a paralog, PGM1, that arose from the whole genome duplication (569 aa)
       
      0.706
RAD53
Serine/threonine-protein kinase RAD53; DNA damage response protein kinase; required for cell-cycle arrest, regulation of copper genes in response to DNA damage; phosphorylates nuclear pores to counteract gene gating, preventing aberrant transitions at forks approaching transcribed genes; activates downstream kinase Dun1p; differentially senses mtDNA depletion, mitochondrial ROS; relocalizes to cytosol under hypoxia; human homolog CHEK2 implicated in breast cancer can complement yeast null mutant; Belongs to the protein kinase superfamily. CAMK Ser/Thr protein kinase family. CHEK2 subfamily (821 aa)
           
  0.695
FSH3
Family of serine hydrolases 3; Putative serine hydrolase; likely target of Cyc8p-Tup1p-Rfx1p transcriptional regulation; sequence is similar to S. cerevisiae Fsh1p and Fsh2p and the human candidate tumor suppressor OVCA2 (266 aa)
           
  0.682
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: ATCC 18824, Candida robusta, NRRL Y-12632, S. cerevisiae, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (7%) [HD]