ADH1 protein (Saccharomyces cerevisiae) - STRING interaction network
"ADH1" - Alcohol dehydrogenase, fermentative isozyme active as homo- or heterotetramers in Saccharomyces cerevisiae
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
protein homology
Your Input:
Gene Fusion
ADH1Alcohol dehydrogenase, fermentative isozyme active as homo- or heterotetramers; required for the reduction of acetaldehyde to ethanol, the last step in the glycolytic pathway; This isozyme preferentially catalyzes the conversion of primary unbranched alcohols to their corresponding aldehydes. Also also shows activity toward secondary alcohols (348 aa)    
Predicted Functional Partners:
Major of three pyruvate decarboxylase isozymes, key enzyme in alcoholic fermentation, decarboxylates pyruvate to acetaldehyde; subject to glucose-, ethanol-, and autoregulation; involved in amino acid catabolism; Major of three pyruvate decarboxylases (PDC1, PDC5, PDC6) implicated in the nonoxidative conversion of pyruvate to acetaldehyde and carbon dioxide during alcoholic fermentation. Most of the produced acetaldehyde is subsequently reduced to ethanol, but some is required for cytosolic acetyl-CoA production for biosynthetic pathways. The enzyme is also one of five 2-oxo acid decar [...] (563 aa)
3-phosphoglycerate kinase, catalyzes transfer of high-energy phosphoryl groups from the acyl phosphate of 1,3-bisphosphoglycerate to ADP to produce ATP; key enzyme in glycolysis and gluconeogenesis (416 aa)
Fructose 1,6-bisphosphate aldolase, required for glycolysis and gluconeogenesis; catalyzes conversion of fructose 1,6 bisphosphate to glyceraldehyde-3-P and dihydroxyacetone-P; locates to mitochondrial outer surface upon oxidative stress; Catalyzes the aldol condensation of dihydroxyacetone phosphate (DHAP or glycerone-phosphate) with glyceraldehyde 3- phosphate (G3P) to form fructose 1,6-bisphosphate (FBP) in gluconeogenesis and the reverse reaction in glycolysis (359 aa)
Triose phosphate isomerase, abundant glycolytic enzyme; mRNA half-life is regulated by iron availability; transcription is controlled by activators Reb1p, Gcr1p, and Rap1p through binding sites in the 5’ non-coding region; inhibition of Tpi1p activi /.../PEP (phosphoenolpyruvate) stimulates redox metabolism in respiring cells; E104D mutation in human TPI causes a rare autosomal disease (248 aa)
Alcohol dehydrogenase isoenzyme type IV, dimeric enzyme demonstrated to be zinc-dependent despite sequence similarity to iron-activated alcohol dehydrogenases; transcription is induced in response to zinc deficiency; Reduces acetaldehyde to ethanol during glucose fermentation. Specific for ethanol. Shows drastically reduced activity towards primary alcohols from 4 carbon atoms upward. Isomers of aliphatic alcohol, as well as secondary alcohols and glycerol are not used at all (382 aa)
Glucose-repressible alcohol dehydrogenase II, catalyzes the conversion of ethanol to acetaldehyde; involved in the production of certain carboxylate esters; regulated by ADR1; This isozyme preferentially catalyzes the conversion of ethanol to acetaldehyde. Acts on a variety of primary unbranched aliphatic alcohols (348 aa)
Mitochondrial alcohol dehydrogenase isozyme III; involved in the shuttling of mitochondrial NADH to the cytosol under anaerobic conditions and ethanol production (375 aa)
Enolase II, a phosphopyruvate hydratase that catalyzes the conversion of 2-phosphoglycerate to phosphoenolpyruvate during glycolysis and the reverse reaction during gluconeogenesis; expression is induced in response to glucose (437 aa)
Pyruvate kinase, functions as a homotetramer in glycolysis to convert phosphoenolpyruvate to pyruvate, the input for aerobic (TCA cycle) or anaerobic (glucose fermentation) respiration (500 aa)
Enolase I, a phosphopyruvate hydratase that catalyzes the conversion of 2-phosphoglycerate to phosphoenolpyruvate during glycolysis and the reverse reaction during gluconeogenesis; expression is repressed in response to glucose (437 aa)
Your Current Organism:
Saccharomyces cerevisiae
NCBI taxonomy Id: 4932
Other names: Candida robusta, Pachytichospora, S. cerevisiae, Saccharomyces, Saccharomyces capensis, Saccharomyces cerevisiae, Saccharomyces italicus, Saccharomyces oviformis, Saccharomyces uvarum var. melibiosus, lager beer yeast, yeast
Server load: low (2%) [HD]