STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
LIG4DNA ligase 4; Involved in ds DNA break repair. Has a role in non-homologous integration (NHI) pathways where it is required in the final step of non-homologous end-joining; Belongs to the ATP-dependent DNA ligase family. (956 aa)    
Predicted Functional Partners:
KU80
ATP-dependent DNA helicase II subunit 2; Single-stranded DNA-dependent ATP-dependent helicase. Involved in non-homologous end joining (NHEJ) DNA double strand break repair. DNA-binding is sequence-independent but has a high affinity to nicks in double-stranded DNA and to the ends of duplex DNA. Binds to naturally occurring chromosomal ends, and therefore provides chromosomal end protection. Required also for telomere recombination to repair telomeric ends in the absence of telomerase. KU70, of the KU70/KU80 heterodimer, binds to the stem loop of TLC1, the RNA component of telomerase. I [...]
   
 0.996
KU70
ATP-dependent DNA helicase II subunit 1; Single-stranded DNA-dependent ATP-dependent helicase. Involved in non-homologous end joining (NHEJ) DNA double strand break repair. DNA-binding is sequence-independent but has a high affinity to nicks in double-stranded DNA and to the ends of duplex DNA. Binds to naturally occurring chromosomal ends, and therefore provides chromosomal end protection. Required also for telomere recombination to repair telomeric ends in the absence of telomerase. KU70, of the KU70/KU80 heterodimer, binds to the stem loop of TLC1, the RNA component of telomerase. I [...]
   
 0.995
YALI0_E03124g
YALI0E03124p.
   
 0.900
YALI0_D10571g
Proliferating cell nuclear antigen; This protein is an auxiliary protein of DNA polymerase delta and is involved in the control of eukaryotic DNA replication by increasing the polymerase's processibility during elongation of the leading strand; Belongs to the PCNA family.
   
 0.900
YALI0_F07084g
Serine/threonine-protein kinase TOR; Belongs to the PI3/PI4-kinase family.
   
 0.896
YALI0_D12364g
YALI0D12364p.
  
 0.875
YALI0_E29931g
YALI0E29931p.
   
 0.846
YALI0_B14553g
Double-strand break repair protein; Involved in DNA double-strand break repair (DSBR). Possesses single-strand endonuclease activity and double-strand-specific 3'-5' exonuclease activity. Also involved in meiotic DSB processing.
  
 0.818
CSE4
Histone H3-like centromeric protein CSE4; Histone H3-like variant which exclusively replaces conventional H3 in the nucleosome core of centromeric chromatin at the inner plate of the kinetochore. Required for recruitment and assembly of kinetochore proteins, mitotic progression and chromosome segregation. May serve as an epigenetic mark that propagates centromere identity through replication and cell division (By similarity).
   
 
 0.816
FEN1
Flap endonuclease 1; Structure-specific nuclease with 5'-flap endonuclease and 5'- 3' exonuclease activities involved in DNA replication and repair. During DNA replication, cleaves the 5'-overhanging flap structure that is generated by displacement synthesis when DNA polymerase encounters the 5'-end of a downstream Okazaki fragment. It enters the flap from the 5'-end and then tracks to cleave the flap base, leaving a nick for ligation. Also involved in the long patch base excision repair (LP-BER) pathway, by cleaving within the apurinic/apyrimidinic (AP) site- terminated flap. Acts as [...]
  
 0.801
Your Current Organism:
Yarrowia lipolytica
NCBI taxonomy Id: 284591
Other names: Y. lipolytica CLIB122, Yarrowia lipolytica CLIB122
Server load: medium (44%) [HD]