STRINGSTRING
ATG13 protein (Yarrowia lipolytica) - STRING interaction network
"ATG13" - YALI0F03432p in Yarrowia lipolytica
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ATG13YALI0F03432p; Activates the ATG1 kinase in a nutritional condition dependent manner through the TOR pathway, leading to autophagy. Also involved in cytoplasm to vacuole transport (Cvt) and more specifically in Cvt vesicle formation. Seems to play a role in the switching machinery regulating the conversion between the Cvt pathway and autophagy. Finally, ATG13 is also required for glycogen storage during stationary phase (By similarity) (715 aa)    
Predicted Functional Partners:
ATG1
YALI0D25388p; Serine/threonine protein kinase involved in the cytoplasm to vacuole transport (Cvt) and found to be essential in autophagy, where it is required for the formation of autophagosomes. Involved in the clearance of protein aggregates which cannot be efficiently cleared by the proteasome. Required for selective autophagic degradation of the nucleus (nucleophagy) as well as for mitophagy which contributes to regulate mitochondrial quantity and quality by eliminating the mitochondria to a basal level to fulfill cellular energy requirements and preventing excess ROS production. [...] (710 aa)
     
  0.989
XP_500594.2
YALI0B07073p (221 aa)
       
 
  0.933
VAC8
YALI0E13992p; Functions in both vacuole inheritance and protein targeting from the cytoplasm to vacuole (573 aa)
       
  0.915
ATG17
YALI0F23639p; Autophagy-specific protein that functions in response to autophagy-inducing signals as a scaffold to recruit other ATG proteins to organize pre-autophagosomal structure (PAS) formation. Modulates the timing and magnitude of the autophagy response, such as the size of the sequestering vesicles. Plays particularly a role in pexophagy and nucleophagy (By similarity) (408 aa)
     
  0.747
ATG9
YALI0F08349p; Involved in autophagy and cytoplasm to vacuole transport (Cvt) vesicle formation. Plays a key role in the organization of the preautophagosomal structure/phagophore assembly site (PAS), the nucleating site for formation of the sequestering vesicle. Required for mitophagy. Cycles between the PAS and the cytoplasmic vesicle pool and may participate in supplying membrane for the growing autophagosome. Also involved in endoplasmic reticulum- specific autophagic process and is essential for the survival of cells subjected to severe ER stress. Different machineries are required [...] (788 aa)
     
 
  0.729
ATG11
YALI0B04598p; Involved in cytoplasm to vacuole transport (Cvt), pexophagy, mitophagy and nucleophagy. Recruits mitochondria for their selective degradation via autophagy (mitophagy) during starvation. Works as scaffold proteins that recruit ATG proteins to the pre-autophagosome (PAS), the site of vesicle/autophagosome formation. Required for the Cvt vesicles completion (By similarity) (924 aa)
       
  0.697
ATG4
YALI0A13277p; Cysteine protease required for the cytoplasm to vacuole transport (Cvt) and autophagy. Required for selective autophagic degradation of the nucleus (nucleophagy) as well as for mitophagy which contributes to regulate mitochondrial quantity and quality by eliminating the mitochondria to a basal level to fulfill cellular energy requirements and preventing excess ROS production. Cleaves the C-terminal amino acid of ATG8 to reveal a C-terminal glycine. ATG8 ubiquitin-like activity requires the exposure of the glycine at the C-terminus for its conjugation to phosphatidylethano [...] (545 aa)
     
 
  0.695
ATG18
YALI0F27907p; The PI(3,5)P2 regulatory complex regulates both the synthesis and turnover of phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2). Necessary for proper vacuole morphology. Plays an important role in osmotically-induced vacuole fragmentation. Required for cytoplasm to vacuole transport (Cvt) vesicle formation, pexophagy and starvation-induced autophagy. Involved in correct ATG9 trafficking to the pre-autophagosomal structure. Might also be involved in premeiotic DNA replication (By similarity) (400 aa)
     
 
  0.662
ATG3
YALI0E24453p; E2 conjugating enzyme required for the cytoplasm to vacuole transport (Cvt) and autophagy. Required for selective autophagic degradation of the nucleus (nucleophagy) as well as for mitophagy which contributes to regulate mitochondrial quantity and quality by eliminating the mitochondria to a basal level to fulfill cellular energy requirements and preventing excess ROS production. Responsible for the E2-like covalent binding of phosphatidylethanolamine to the C-terminal Gly of ATG8. The ATG12- ATG5 conjugate plays a role of an E3 and promotes the transfer of ATG8 from ATG3 [...] (366 aa)
     
 
  0.662
ATG7
YALI0C20119p; E1-like activating enzyme involved in the 2 ubiquitin- like systems required for cytoplasm to vacuole transport (Cvt) and autophagy. Activates ATG12 for its conjugation with ATG5 and ATG8 for its conjugation with phosphatidylethanolamine. Both systems are needed for the ATG8 association to Cvt vesicles and autophagosomes membranes. Autophagy is essential for maintenance of amino acid levels and protein synthesis under nitrogen starvation. Required for selective autophagic degradation of the nucleus (nucleophagy) as well as for mitophagy which contributes to regulate mitoc [...] (598 aa)
       
 
  0.618
Your Current Organism:
Yarrowia lipolytica
NCBI taxonomy Id: 4952
Other names: Candida lipolytica, Dipodascaceae, Mycotorula lipolytica, Y. lipolytica, Yarrowia, Yarrowia lipolytica
Server load: low (6%) [HD]