STRINGSTRING
ATG9 protein (Yarrowia lipolytica) - STRING interaction network
"ATG9" - YALI0F08349p in Yarrowia lipolytica
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ATG9YALI0F08349p; Involved in autophagy and cytoplasm to vacuole transport (Cvt) vesicle formation. Plays a key role in the organization of the preautophagosomal structure/phagophore assembly site (PAS), the nucleating site for formation of the sequestering vesicle. Required for mitophagy. Cycles between the PAS and the cytoplasmic vesicle pool and may participate in supplying membrane for the growing autophagosome. Also involved in endoplasmic reticulum- specific autophagic process and is essential for the survival of cells subjected to severe ER stress. Different machineries are required [...] (788 aa)    
Predicted Functional Partners:
XP_502723.1
YALI0D11968p (434 aa)
     
  0.851
ATG18
YALI0F27907p; The PI(3,5)P2 regulatory complex regulates both the synthesis and turnover of phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2). Necessary for proper vacuole morphology. Plays an important role in osmotically-induced vacuole fragmentation. Required for cytoplasm to vacuole transport (Cvt) vesicle formation, pexophagy and starvation-induced autophagy. Involved in correct ATG9 trafficking to the pre-autophagosomal structure. Might also be involved in premeiotic DNA replication (By similarity) (400 aa)
     
 
  0.799
XP_504745.1
YALI0E33774p (1322 aa)
     
 
  0.756
XP_505213.2
YALI0F09559p (821 aa)
     
  0.755
ATG13
YALI0F03432p; Activates the ATG1 kinase in a nutritional condition dependent manner through the TOR pathway, leading to autophagy. Also involved in cytoplasm to vacuole transport (Cvt) and more specifically in Cvt vesicle formation. Seems to play a role in the switching machinery regulating the conversion between the Cvt pathway and autophagy. Finally, ATG13 is also required for glycogen storage during stationary phase (By similarity) (715 aa)
     
 
  0.729
ATG7
YALI0C20119p; E1-like activating enzyme involved in the 2 ubiquitin- like systems required for cytoplasm to vacuole transport (Cvt) and autophagy. Activates ATG12 for its conjugation with ATG5 and ATG8 for its conjugation with phosphatidylethanolamine. Both systems are needed for the ATG8 association to Cvt vesicles and autophagosomes membranes. Autophagy is essential for maintenance of amino acid levels and protein synthesis under nitrogen starvation. Required for selective autophagic degradation of the nucleus (nucleophagy) as well as for mitophagy which contributes to regulate mitoc [...] (598 aa)
     
 
  0.677
ATG1
YALI0D25388p; Serine/threonine protein kinase involved in the cytoplasm to vacuole transport (Cvt) and found to be essential in autophagy, where it is required for the formation of autophagosomes. Involved in the clearance of protein aggregates which cannot be efficiently cleared by the proteasome. Required for selective autophagic degradation of the nucleus (nucleophagy) as well as for mitophagy which contributes to regulate mitochondrial quantity and quality by eliminating the mitochondria to a basal level to fulfill cellular energy requirements and preventing excess ROS production. [...] (710 aa)
     
 
  0.654
ATG12
YALI0F29689p; Ubiquitin-like protein involved in cytoplasm to vacuole transport (Cvt), autophagy vesicles formation, mitophagy, and nucleophagy. Conjugation with ATG5 through a ubiquitin-like conjugating system involving also ATG7 as an E1-like activating enzyme and ATG10 as an E2-like conjugating enzyme, is essential for its function. The ATG12-ATG5 conjugate functions as an E3-like enzyme which is required for lipidation of ATG8 and ATG8 association to the vesicle membranes (By similarity) (205 aa)
       
 
  0.627
SNX41
YALI0D07678p; May be required for cytoplasm to vacuole transport (Cvt) and pexophagy (570 aa)
     
 
  0.617
ATG5
YALI0E24519p; Involved in cytoplasm to vacuole transport (Cvt) and autophagic vesicle formation. Autophagy is essential for maintenance of amino acid levels and protein synthesis under nitrogen starvation. Required for selective autophagic degradation of the nucleus (nucleophagy). Also required for mitophagy, which eliminates defective or superfluous mitochondria in order to fulfill cellular energy requirements and prevent excess ROS production. Conjugation with ATG12, through a ubiquitin-like conjugating system involving ATG7 as an E1-like activating enzyme and ATG10 as an E2-like con [...] (256 aa)
       
 
  0.609
Your Current Organism:
Yarrowia lipolytica
NCBI taxonomy Id: 4952
Other names: Candida lipolytica, Dipodascaceae, Mycotorula lipolytica, Y. lipolytica, Yarrowia, Yarrowia lipolytica
Server load: low (18%) [HD]